

Martine Dowden and Michael Dowden

Architecting CSS
The Programmer’s Guide to Effective Style
Sheets

Martine Dowden
Brownsburg, IN, USA

Michael Dowden
Brownsburg, IN, USA

Any source code or other supplementary material referenced by the
author in this book is available to readers on GitHub via the book’s
product page, located at www. apress. com/ 9781484257494 . For more
detailed information, please visit http:// www. apress. com/ source-code
.

ISBN 978-1-4842-5749-4 e-ISBN 978-1-4842-5750-0
https://doi.org/10.1007/978-1-4842-5750-0

© Martine Dowden and Michael Dowden 2020

This work is subject to copyright. All rights are reserved by the
Publisher, whether the whole or part of the material is concerned,
speci�ically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on micro�ilms or in any other
physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks,
service marks, etc. in this publication does not imply, even in the
absence of a speci�ic statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general
use.

The publisher, the authors and the editors are safe to assume that the
advice and information in this book are believed to be true and accurate
at the date of publication. Neither the publisher nor the authors or the

http://www.apress.com/9781484257494
http://www.apress.com/source-code
https://doi.org/10.1007/978-1-4842-5750-0

editors give a warranty, expressed or implied, with respect to the
material contained herein or for any errors or omissions that may have
been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional af�iliations.

Distributed to the book trade worldwide by Springer Science+Business
Media New York, 1 New York Plaza, New York, NY 10004. Phone 1-800-
SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

This book is dedicated to all of the CSS professionals who have ever been
told they were “not real programmers.”

Foreword
As an international community, the W3C starts with a mission
statement: Web for All, Web on Everything. This means the Web is a
medium designed to adapt to the needs and preferences of every user,
and the constraints of every device. But that poses a problem for
design. To quote the very �irst website:

“This implies no device-speci�ic markup, or anything which requires
control over fonts or colors, for example.” 1

In the early days of the Internet, web design seemed impossible.
How could we have planned for every possible combination of user-
needs and device capabilities into the future—from text-only terminals
to smart speakers, watches, HD displays, and accessibility devices?

Nearly 30 years later, CSS is the standard web language of design,
used on nearly every website and application we develop. But that
broad use, and the low barriers to getting started, can lead us to
underestimate this powerful language and the complex problems it is
designed to solve.

As the web continues to grow its more important than ever for
professional developers to understand how and why CSS works, and
how we can get the most out of it.

In this book, Martine and Michael bring their experience and
teaching expertise to the topic – leading us through every layer of the
language: from cascade and inheritance, to progressive enhancement,
web layout, responsive design, and architecture. This book is packed
with guidance to keep your CSS resilient and organized.

Miriam Suzanne

Miriam Suzanneis a project manager, user-experience designer, and
front-end architect. An accomplished writer and novelist, she authored “
Jump Start Sass” and is a staff-writer for CSS Tricks (https://css-
tricks.com/). Suzanne is a member of the Sass core team, and
creator of popular open-source tools including Susy, True, and Herman.
She is an Invited Expert with the W3C CSS Working Group and a teacher
for the Mozilla Developer channel, producing resources for web
professionals including tools, videos, articles, and demos. Suzanne is an

https://css-tricks.com/

international conference speaker and in 2017 she won the “Best Of”
speaker award at CSS Dev Conference.

Acknowledgments
Writing a book is a project of passion and commitment and takes a
tremendous amount of time and support from friends and family,
doubly so when writing multiple books in a single year. We would like
to thank our children, Brook and Xander, for their patience during this
process. And of course their grandparents, Marc and Elisabeth Ebtinger,
for making it possible for us to dedicate time to writing and
conferences.

Without the support of the technology and speaking community, we
would not be where we are today. Lee Brandt and Kevin Miller were
instrumental in getting Martine to start speaking at conferences. Along
with Lee, Jeff Strauss and Jon Mills helped us expand our conference
presence and meet a large number of other generous people. Nate
Taylor prompted Michael to start speaking about CSS. Michael �irst met
Chris DeMars because of CSS and Chris later nominated us for the GDE,
which was signi�icantly helpful. And of course we must mention Philip
Japikse, fellow speaker and Apress author, who has been tremendously
supportive and without whom this book would not have happened.

Many of those who in�luenced us on CSS are already mentioned
within the pages of this book, but it’s important to note the early and
long-lasting in�luence that Dave Shea and Molly Holzschlag have had on
our understanding of CSS.

Finally, we must mention those who contributed directly to the
pages you’re about to read. The Apress team of Louise Corrigan, Nancy
Chen, and Phil Nash has been supportive the whole way, from walking
through the proposal process to ensuring the quality of the �inished
book. Our last thanks goes to the many people who went above and
beyond to support our research on the history of accessibility and the
people involved, including Sarah Bourne, Fred de Villamil, Jon Baggaley,
Andy Budd, Eric Meyer, Steven Pemberton, Dylan Wilbanks, Chris
Wilson, and Chris Lilley.

Table of Contents
Chapter 1: Cascading Style Sheets

Classi�ication

Language Features

Structure

Software Architecture

Separation of Concerns

Nontechnical Factors

Best Practices

Web Architecture

HTML

Document Object Model

History of CSS

Creation of CSS

Early Adoption

Early Advocates

CSS Today

Summary

Chapter 2: Rules and Selectors

Selectors

Basics

Combinators

Pseudo Elements

Pseudo Classes

Declarations

Properties

Units

Functions

Variables

At-Rules

@import

@supports

@media

Summary

Chapter 3: Order of Importance

Inheritance

Global Values

Speci�icity

Precedence

Cascading

Value Processing

Summary

Chapter 4: Layouts

Box Model

Box Sizing

Display

Inline

Block Elements

Inline-Block

Float

Flexbox

Grid

Responsive Design

Summary

Chapter 5: Compatibility and Defaults

Browser Support

Browser Defaults

CSS Reset

Normalize

Browser Compatibility

Vendor Pre�ixes

Fallbacks

Supports At-Rule

Project Defaults

Summary

Chapter 6: Interactions and Transitions

User Interaction Response

Transform

Transitions

Keyframe Animations

Timing Functions

Performance Considerations

Summary

Chapter 7: Preprocessors

Implications for Architecture

Nesting

Color Functions and Variables

Mixins

Simple Mixin

Parameters

Arguments

@extend

@Import

Summary

Chapter 8: Frameworks, Libraries, and JavaScript

JavaScript

Manipulating CSS Using JS

Component-Based Architecture

Libraries and Frameworks

Web Components

Styling Applications That Use Web Components

Summary

Chapter 9: Architectural Patterns

Approach

Goals

Guidelines

Methodologies

OOCSS

BEM

SMACSS

ITCSS

Processes

Decision Making

Linting

Testing

Code Review

Summary

Index

About the Authors
Martine Dowden
is the CTO of Andromeda, Founder and
Lead Developer at FlexePark, and an
international speaker. She focuses on
web interfaces that are beautiful,
functional, accessible, and usable,
approaching user experience from both
art and science, drawing from her
degrees in psychology and visual
communications. Martine is a 2019
Google Developer Expert in Web
Technologies, a 2019 Microsoft MVP in
Developer Technologies, and the author
ofProgramming Languages ABC++
andApproachable Accessibility: Planning
for Success .

Michael Dowden
is the CEO of Andromeda, Founder and Product Architect at FlexePark,
an international speaker, a 2019 Google Developer Expert in Firebase,
and a 2019 Microsoft MVP in Developer Technologies. For more than 20
years, he has been writing code and geeking out over technology. He is
passionate about keeping things simple and focusing on what provides
real value to the end user. Michael is the author ofProgramming
Languages ABC++ andApproachable Accessibility: Planning for Success .

About the Technical Reviewer
Phil Nash
is a developer evangelist for Twilio and a
Google Developer Expert. He’s been in
the web industry for more than 10 years
building applications and integrating
APIs with JavaScript and Ruby. He’s
British, but currently enjoying life in
Melbourne, Australia. He can be found
hanging out at meetups and conferences,
playing with new technologies, or
writing open source code. Phil tweets at
@philnash, and you can �ind him
elsewhere online at
https://philna.sh .

https://philna.sh/

1
Footnotes
http://info.cern.ch/hypertext/WWW/MarkUp/HTMLConstraints.html

(Retrieved 2020)

http://info.cern.ch/hypertext/WWW/MarkUp/HTMLConstraints.html

(1)

© Martine Dowden and Michael Dowden 2020
M. Dowden, M. Dowden, Architecting CSS
https://doi.org/10.1007/978-1-4842-5750-0_1

1. Cascading Style Sheets

Martine Dowden1 and Michael Dowden1

Brownsburg, IN, USA

This book on Cascading Style Sheets (CSS) takes a very different
approach from most. It isn’t trying to teach you how to design web
pages and, aside from a cursory overview, isn’t focused on teaching you
how to use CSS. This chapter introduces the focus of this book, which is
how (and why) to treat CSS as a programming language.

Classi�ication
Cascading Style Sheets (CSS) are a web technology that allows layout,
theme, and style to be applied to a document. In most common cases
the document in question is a Hypertext Markup Language (HTML) �ile
and the rendering is performed by a web browser.

Often CSS is seen as a design tool since it allows the author or
designer of a web page to determine the visual look of that page.
Because of its control over the �inal look of a web page, CSS has a direct
impact on both usability and accessibility. Due to these factors, creating
style sheets and writing CSS are sometimes assumed to be design tasks,
and it may be the designer on a software team who is tasked with
maintaining the style sheets.

It’s interesting to note that before CSS became the dominant styling
language of the Web, there were a number of other competing
proposals. However,

“CSS had one feature that distinguished it from all the others: It took
into account that on the Web, the style of a document couldn’t be

https://doi.org/10.1007/978-1-4842-5750-0_1

designed by either the author or the reader on their own, but that
their wishes had to be combined, or cascaded, in some way; and, in
fact, not just the reader’s and the author’s wishes, but also the
capabilities of the display device and the browser.”1

At its core, then, CSS puts control in the hands of both authors and
readers. This makes it somewhat interactive and subjects it to the will
of the reader of a web page, since they are able to in�luence the �inal
look of a page based upon their own preferences. Most often when
author intent meets the end-user in�luence to create a unique hybrid
output, this is known as programming. So this begs the question:
Exactly what is CSS? Should writing style sheets be considered
programming, and should those who write CSS be considered
programmers?

For starters, just like popular programming languages such as
JavaScript and Python, CSS is a language. As shown in the “Structure”
section, CSS has a speci�ic syntax that must be followed and the rules
you write cause actions to be performed. Additionally, the
WorldWideWeb Consortium (W3C) refers to CSS as a language.2

One measure of a programming language is to ask if it is Turing
complete. Skipping the formal de�inition, the simple explanation of a
Turing complete language is one that can solve any arbitrary
computation. Note that this isn’t a strict requirement and there are
some very useful programming languages that are not Turing complete,
most notably Structured Query Language (SQL) and Regular
Expressions (RegEx). However, if a language can be shown to be Turing
complete, it should remove all doubt about its classi�ication. The
combination of CSS + HTML has received the formal proof necessary to
be classi�ied as Turing complete.3

This means that CSS + HTML meets the requirements for any
general-purpose programming language, and that writing CSS and
HTML counts as programming. This means that you are most de�initely
a programmer (or web developer, if you prefer).

Language Features
Despite the classi�ication of CSS as a programming language, we can
probably agree that using CSS + HTML for general programming tasks

wouldn’t be particularly convenient. That is because this really isn’t the
point of CSS (or HTML).

Regardless, there are many interesting features of the language that
are similar to more traditional programming languages, including

Variables
Functions
Calculations
Imports
Scope
Comments
Polymorphism

When utilizing CSS precompilers, you gain access to even more
programming language features, such as

Mixins
Extension
Namespaces
List and map data structures
Mathematical expressions

See Chapter 2 for a more in-depth exploration of the CSS language
features and Chapter 7 for more on CSS precompilers.

Structure
It is important to note that CSS is a declarative language rather than an
imperative one. This means that rather than writing code that tells a
web browser how to apply styles to a page, we instead tell the browser
what styles to apply and where to apply them. These declarations are
called rulesets in the speci�ication, but may be referred to simply as
rules.

Each rule in CSS is comprised of one or more selectors and one or
more declarations, as shown in Figure 1-1.

Figure 1-1 CSS Ruleset

Each declaration is made up of a property-value pair. As of this
writing, the CSS Working Group listed 564 possible properties. Each
property must be supported by the user agent (typically a web
browser) for it to have any effect. Unsupported properties are simply
ignored.

Rulesets may be further grouped and modi�ied by at-rules such as
@media or @supports and are collected into style sheets. A style
sheet is simply a text �ile with a .css extension that contains any number
of rules which describe the presentation of a document or web page.

Software Architecture
Once we accept that CSS has all the sophistication of a programming
language, we need to accept the implication that we must treat style
sheets like code. This means that we can take advantage of many
principles, best practices, and design patterns of software architecture
and apply them when writing CSS.

Note You may �ind the term software architecture used
interchangeably with the term software design. This is common
within the industry and both terms refer to the same high-level
design thinking and process methodology. Since CSS is often used for
visual design, we chose the term architecture throughout this book to
avoid any confusion between these concepts.

Software architecture looks at the structure and components of a
system and weighs the pros and cons of various possible combinations
and approaches. The strengths, weaknesses, and limitations of various
systems and approaches should all be considered. The architect’s
approach is much more of the high-level bird’s-eye view than a
developer’s (although often the same person will do both).

For example, if you wanted to animate an image moving across the
page when a button is clicked, how would you implement that
functionality? Would you use CSS or JavaScript? Would you use an
 element, Scalable Vector Graphics (SVG) , or Canvas? Which will
yield the smoothest visual animation? Which approach will be the
easiest to maintain when requirements change? These are the types of
questions that software architecture attempts to evaluate.

You do not have to start from scratch when making these types of
decisions. There are some well-established principles of software
architecture and best practices that can guide you on your journey to
more strategic decision making with regard to CSS.

Separation of Concerns
The term separation of concerns is credited to Edsger Dijkstra4 and
refers to the idea that it is very helpful for us to focus on one aspect of a
problem at a time. As shown later in the “Web Architecture” section, a
web application separates content, style, and actions and even uses
different technologies for each of these concerns.

Looking at separation of concern as it pertains to CSS, what are
some of the concerns we might �ind in a ruleset? As shown in Figure 1-
2, we see that layout, theme, typography, and interaction are all aspects
of a web page that can be controlled using CSS. See Figure 1-2.

Figure 1-2 CSS Areas of Concern

Now, let’s say you have a style sheet with 20,000 rulesets. This is
clearly unmanageable and these rulesets need to be split into multiple
�iles. How do you determine how many �iles you need and which
rulesets go into each �ile? One approach is to split �iles based upon
concern (e.g., layout vs. theme), while another approach would be to
group rulesets based upon the speci�ic components to which they apply.
This question is quite fundamental to the discussion of different CSS
architecture models in Chapter 10.

Two of the most widely accepted principles of software
architecture, cohesion and coupling, serve to better de�ine the idea of
separation of concerns. These metrics were �irst published in
Structured Design5 and have since become standards in software
engineering.

Cohesion
Cohesion can be described as a measure of responsibility. It is a
qualitative measure of the breadth of different tasks or effects a given
unit of code is responsible for and the nature of the relationship
between those tasks or effects. Traditionally there are seven levels of
cohesion ranked from coincidental (worst) to functional (best).

https://doi.org/10.1007/978-1-4842-5750-0_10

Another popular principle that is related to cohesion is the single
responsibility principle (SRP) . The idea is that every function and
module should have just one responsibility. There are two important
goals that derive from this:

1.
Lack of side effects – If a function does just one thing, then there
is little risk of side effects or unintended consequences from its use.

2.

Only one reason to change – Every time code changes, it
increases the risk of introducing errors and bugs. If we reduce the
number of changes, we can diminish risk. Additionally, this helps
avoid side effects from system-wide change.

The goals of both cohesion and single responsibility are to promote
simplicity and reduce risk, which are important goals for all of our
architectural decisions.

Coupling
Coupling describes the interdependence between two or more units of
code. Loose coupling is associated with good cohesion and generally
describes a module with good reusability that may be updated
independently of other modules with minimal impact on the overall
system. This is an important attribute of robust and �lexible systems.

Tight coupling is associated with poor cohesion and describes
modules that are hard to test or modify independently. Such modules
generally cannot be reused freely and may require larger testing efforts
when changed. Favor looser coupling whenever possible.

When building web applications, we will �ind a lot of value in
decreasing the coupling between content and design. Ideally we should
be able to create style sheets that work for a wide range of content
without adjustment. When we achieve this, we may say we have
orthogonality.

Orthogonality
While an important and common term when discussing system design,
the word orthogonality has accumulated some disfavor in recent years.
This is likely due to a combination of misuse and poor de�initions

leading to it sometimes being described as “technobabble.”6 However,
orthogonality is an important concept that is directly related7 to
cohesion and coupling, and it will factor into many decisions we discuss
later in this book.

Orthogonality describes a relationship that is cooperative without
being codependent, where two things work together toward a common
goal while maintaining a level of independence.

In mathematics the simplest form of orthogonality of two vectors is
when they are perpendicular to each other, meaning they form a right
angle and intersect only once. Orthogonality can also be described as
statistical independence, meaning two (or more) factors that vary
without being in�luenced by one another

Taken into computer software, we use orthogonality to describe a
relationship between two modules or components that are able to
change independently of one another. For example, an HTML page may
be considered orthogonal to its CSS if we’re able to edit an HTML �ile to
change the content and/or structure of the page with no corresponding
change to the CSS, but the visual design of the page remains unaffected
after the change.

In fact, this separation of concerns between document layout and
structure is one of the original design considerations behind CSS.

Nontechnical Factors
In order to exercise separation of concerns, we must �irst practice the
art of breaking down complex and challenging problems into simpler
pieces. Often we �ind that seemingly impossible tasks are simply large
accumulations of a great many simple tasks. In learning to see the
individual pieces, we now have the building blocks that we need to
create solutions.

Beyond the technical aspects of software architecture, there are
practical considerations that must weigh into our decisions.

Cost of Maintenance
It’s easy to buy into the idea that the cheapest thing to build today is the
best �inancial decision; however, the true cost of ownership of a
software product must include the ongoing cost of maintenance in the
calculation. Often the thing that is the cheapest to build may be the

most expensive to maintain. Perhaps we can purchase an existing third-
party library or template and pull in updates from them instead of
building and maintaining ourselves?

Development Time
We’re often working on tight deadlines in an ongoing effort to deliver
value to our customers and produce revenue for our company. The total
time and effort of an architectural decision is an important decision
point as it may affect both cost and timeline. Sometimes it’s worth
taking a big hit initially to ramp up on a new approach that will be
faster over time. Other times we need to acknowledge that going with
things we’re already familiar with is the best choice. But do consider
that development time is very expensive, so sometimes a decision that
seems trivial (shaving 10 seconds off page reload time during
development) may pay dividends later (10 seconds x 100 times a day x
260 work days x 5 developers = 15 days a year in savings).

Developer Satisfaction
While the technical and �inancial impact of our decisions are relatively
straightforward, the impact decisions can have on morale are just as
important and easy to overlook. So when deciding between CSS, Sass,
and Less or selecting your next CSS framework, the attitude and buy-in
from your team is an important consideration. Sometimes the friction
can be the usual resistance to change or the pace of change; sometimes
it’s a legitimate concern that the decision is not the best �it for the
product or team. Yet other times it’s because the developers don’t feel
the decisions are helping them build useful skills. Take these concerns
seriously because morale affects performance, quality of life, and
turnover.

Best Practices
It is important to acknowledge that the study of architecture revolves
around de�ining solution patterns for common problems, but also that
there is no absolute answer. No single approach is always right and no
single decision will work in all cases. Practicing architecture is all about
understanding your available options, weighing the positive and
negative outcomes of each one, and then making a decision.

Documenting these decisions, and the reasoning that went into them, is
another important part of being an architect. It’s essential that we – and
others – can learn from both our successes and our failures.

There are a series of practices that are generally good defaults in
decision making. Not that they are always the right answer, but that
using them absent any compelling reason to the contrary will generally
produce good results.

Don’t Repeat Yourself
Often referred to as DRY, Don’t Repeat Yourself indicates that
duplication can be an antipattern. When a bit of code is duplicated ten
times within a project, this means we must update ten places anytime
this code changes. If we only update eight of these places in a future
update, we may �ind that hard-to-diagnose bugs stick around long after
we thought they had been �ixed.

The same can be true for CSS – duplicating the same rulesets and
declarations can lead to additional maintenance effort and
inconsistency in appearance over time.

There are a number of available mechanisms to reduce duplication
in our style sheets including cascading, inheritance, variables, and
mixins.

Occam’s Razor
The logical razor credited to Occam is: “Do not multiply entities without
necessity!”.8 While Occam never wrote these exact words, this principle
comes from his work on problem solving, making it relevant to a
programming context. The principle of Occam’s razor is perhaps better
known as “the simplest working solution is likely the best one.”

Note A logical razor is a rational principle used to shave off
possible but unrealistic or unlikely explanations for a given
phenomenon.9

Simplicity provides great value to our code. It can make code easier to
debug, easier to read, and make it easier for new teammates to get up-
to-speed. Also, this provides an excellent default barring any external

factors – the simplest solution we can come up with should be suf�icient
for many cases.

You Ain’t Gonna Need It
Sometimes referred to as YAGNI, the principle of You Ain’t Gonna Need
It is that we should generally avoid adding anything to our code that we
don’t have a speci�ic requirement for. We should generally avoid
premature optimization by keeping our code as simple as we can until
there’s a compelling reason to do otherwise. Often this even means
ignoring the DRY principle until we know that we’ll need a bit of code
three to four times or more as the cost of minimizing duplication may
be too expensive for just two to three cases.

Learn from Others
Use existing architectural patterns and approaches, such as those
presented in Chapter 10. Use Google to �ind other people with similar
challenges and learn from them. Take to social media to get help from
colleagues.

Web Architecture
As previously mentioned, a web page typically consists of a document
(HTML), style sheets (CSS), and possibly scripts (JavaScript), all
provided to an end user through a user agent (web browser). The web
browser performs a lot of activity to build the web page from these
components. The Mozilla Firefox model is shown in Figure 1-3.

https://doi.org/10.1007/978-1-4842-5750-0_10

Figure 1-3 Browser Engine10

All of the source �iles must be retrieved from a web server, and then
the text must be parsed according to its type. The HTML and JavaScript
combine to build and manipulate the Document Object Model (DOM) ,
which will be described in more detail in the following text. The Style
Engine combines the DOM with the CSS to produce a layout, including
any media �iles such as images or video. But even this layout is just a
nonvisual model that must be rendered onto the screen using the paint
and composition steps.

While it is not necessary to fully understand all of the activities
undertaken by the browser, the relationship between HTML and CSS is
of particular interest throughout this book. Since we’ve already covered

an explanation of CSS, an overview of HTML and the DOM is provided in
the following sections.

HTML
In order for CSS to work in a web context, the desired styles or style
sheets must be referenced from the HTML (Hypertext Markup
Language) document. There are three possible options, but the best
method for most scenarios is going to be linking to an external style
sheet �ile as shown in Listing 1-1.

<!DOCTYPE>

<html>

<head>

 <title>Linked Style Sheet</title>

 <link rel="stylesheet" href="styles.css">

</head>

<body>

 <p>Sample HTML</p>

</body>

</html>

Listing 1-1 Link to External Style Sheet

In some rare cases it may be necessary or desirable for the HTML to
be self-contained and include all of the style information within a single
�ile. This can be achieved using the style tag shown in Listing 1-2.

<!DOCTYPE>

<html>

<head>

 <title>Embedded Style Sheet</title>

 <style>

 p { font-weight: bold; }

 </style>

</head>

<body>

 <p>Sample HTML (in bold)</p>

</body>

</html>

Listing 1-2 Self-Contained Styles

The �inal method is to include styles directly inline on the HTML tag
as shown in Listing 1-3. Using this method is functionally equivalent to
setting element styles directly using JavaScript.

<!DOCTYPE>

<html>

<head>

 <title>Inline Styles</title>

</head>

<body>

 <p style="color: red">Sample HTML (in red)</p>

</body>

</html>

Listing 1-3 Inline Styles

There are a large number of CSS features that are simply not
available using inline styles, including most of the at-rules. Additionally,
this “breaks” cascading and inheritance, which is described in more
depth in Chapter 3.

The fact that an HTML document must specify its own style sheets
implies an authoritative relationship from the document to the style
sheet. A style sheet does not get to specify what documents it belongs
to, but it can specify selectors and conditions that determine the
situations where rules get applied to a document, a concept which gets
expanded upon in the following chapters.

Because of the relationship between CSS and HTML, it is important
to understand the structure and vocabulary of HTML documents as
outlined in Figure 1-4.

Figure 1-4 HTML Structure

As illustrated earlier, HTML is made up of tags which are
demarcated by angle brackets. An HTML element refers to the entire
content of a tag, from the �irst angle bracket of its opening tag to the last
angle bracket of its closing tag. Some elements, such as , have no
body and thus no closing tag. Some elements, such as <div> or
<button>, may contain text or even other tags between their open
and closing tags. All tags may have attributes such as ID, class, or
title. Some tags have mandatory attributes, which are required to be
considered valid.

There are CSS selectors for tags, attributes, and values, which will be
covered in detail in Chapter 2. One thing worth noting here is that some
HTML tags exist primarily to provide semantic context.

Note Semantics is the branch of linguistics and logic concerned
with meaning. When applied to code, including HTML, we use the
word “semantic” to indicate a word or tag that conveys a meaning or
purpose beyond serving as a simple label.

For example, <div> can be used to group any arbitrary set of tags, but
all this communicates is a generic division or grouping. The <nav> tag
indicates navigation, <article> indicates independent and self-
contained content, and <aside> indicates related but secondary
content, much like the preceding Note. This additional meaning is
helpful for user agents and screen readers, but can also be used within
our CSS to write more robust and meaningful selectors.

Document Object Model
The Document Object Model (DOM) is the relationship tree built by a
user agent which describes the entire document from one or more
sources including HTML, JavaScript, and CSS. The DOM speci�ication
includes an API for access and manipulation by JavaScript and each
HTML element and attribute map onto the DOM as illustrated in Figure
1-5.

Figure 1-5 Document Object Model

Every item in the DOM is called a node. A node may be an element,
attribute, or text, re�lecting the underlying HTML. Also like HTML,
elements have attributes. All of these can be read and modi�ied directly
using JavaScript for dynamic web pages.

Note that CSS doesn’t factor into the DOM directly. However, it is
possible to use the DOM to alter visual output by directly modifying the
class or style attributes. Looking back at Figure 1-5, we see that the

DOM provides the structure that the Style Engine applies the CSS to
when producing a layout.

History of CSS

October
Browser: WorldWideWeb,
Tim
Berners-Lee – �irst web
browser

1990

 1993 January 23
Browser: Mosaic – �irst browser to show with images
inline with text

October 1
WorldWideWeb Consortium
(W3C) Founded
December 15
Browser: Netscape Navigator
1

1994 October 10
CSS �irst proposed by Håkon Wium Lie

August 16
Browser: Internet Explorer
1.0

1995 April 10
Browser: Opera 1

 1996 December 17
Cascading Style Sheets, level 1 (CSS1)
Recommendation, W3C

May 12
A List Apart, Jeffrey Zeldman

1997

August
Web Standards Project
(WaSP)

1998 May 12
Cascading Style Sheets, Level 2 (CSS2)
W3C Recommendation

 1999 June 22
First 3 CSS3 Drafts: Color Pro�iles, Multi-column layout,
and Paged Media

April 14
CSS3 Introduction, W3C
Working Draft

2000

 2002 October 10

Wired News CSS Redesign11

January 7
Browser: Safari 1
May 7
CSS Zen Garden, Dave Shea

2003 February

ESPN CSS Redesign12

 2004 November 9
Browser: Firefox 1.0

October
Sass CSS preprocessor

2005

 2007 July 4
CSS-Tricks, Chris Coyier

December 11
Browser: Google Chrome 1.0

2008

 2009 August
Less CSS preprocessor

April
caniuse.com

2010

 2011 June 7
Cascading Style Sheets, Level 2
Revision 1 (CSS 2.1), W3C
Recommendation

June 19
Media Queries,

W3C Recommendation13

2012

 2013 November 7
Style Attributes

W3C Recommendation14

March 20
CSS Shapes Module Level 1
W3C Candidate
Recommendation15

2014

 2015 December 3
CSS Custom Properties for Cascading Variables

W3C Candidate Recommendation16

March 1
CSS Flexible Box Layout Level
1,
W3C Candidate
Recommendation17

2016 September 29
CSS Grid Layout Module Level 1,

W3C Candidate Recommendation18

September 25
Scrollbars Module Level 1,

W3C First Public Draft19

2018 November 6
Selectors Level 3,

W3C Recommendation20

November 24
Writing Modes Level 3
W3C Proposed
Recommendation21

2019

Creation of CSS
Affecting the visual style of a web page was a known problem from the
very beginning of the Web. Initially some basic visual controls were
built into HTML, but problems with this approach were quickly
identi�ied. As mentioned at the beginning of the chapter, many people
proposed, and even implemented, mechanisms for styling the Web, and
during this time Håkon Wium Lie proposed the idea of CSS. Together
with Bert Bos, he developed a proposal which was submitted to the
newly formed W3C.

Lie and Bos went on to found the �irst W3C CSS Working Group
along with Chris Wilson and Vidur Apparao, with Chris Lilley as the
�irst WG Chair. The CSS level 1 recommendation was published 2 years
later in 1996.

Dr. Håkon Wium Lie
In 1994 Håkon Wium Lie joined the WorldWideWeb project at CERN
where he joined web pioneers Tim Berners-Lee and Robert Cailliau. In
this �irst year, he drew upon his background in electronic publishing
from the MIT Media Lab and produced the proposal for CSS. He went to
work for W3C the following year, on the CSS Working Group.

Lie became the CTO of Opera Software in 1999, which was the most
CSS-friendly browser at the time. He continued in that role until 2016
when the company was sold.

Dr. Bert Bos
While Håkon Wium Lie was working on his proposal for CSS, Bert Bos
was producing his own stream-based style sheet proposal.22 He
reviewed the initial proposal for CSS and he and Lie determined that
the two proposals could be combined. During the transition of the
WorldWideWeb project out of CERN in 1995, Bos was hired to the
newly formed W3C, where he continued working with Lie on the CSS1
speci�ication.

Bos remains an active member of the CSS Working Group, having
previously served as a chairman of the group. Together with Lie, he
wrote Cascading Style Sheets: Designing for the Web, one of the very �irst
books on CSS.

Chris Lilley
Chris Lilley started establishing web standards as a member of the
Internet Engineering Task Force (IETF) working on HTML 2.0 and the
PNG graphics format. He joined the W3C in 1996, initially working with
graphics and fonts, chairing a Working Group on Web Fonts. When the
CSS Working Group was formed a year later, he became the chair of this
group. The following year he began 10 years as chair of the W3C
Scalable Vector Graphics (SVG) Working Group. Over the years Lilley
has authored and edited a large number of web and graphics
speci�ications, and books on the same.

Chris Wilson
Chris Wilson was a founder of the �irst CSS Working Group and was
credited by Håkon Wium Lie as the programmer who actually added
CSS to Internet Explorer version 3, before the speci�ication was even
�inished.23 He has remained active in the W3C ever since, where he has
held positions including chair of the Web Platform Incubation Group,
chair of the HTML Working Group, and a member of the Advisory
Board. He worked on Internet Explorer for Microsoft until 2009, and in
2010 he joined Google where he works on Chrome, speci�ically
augmented and virtual reality capabilities.

Vidur Apparao

Vidur Apparao joined the initial CSS Working Group while working as
Chief Architect at Netscape, where he was working on the Gecko Layout
Engine. In addition to his work on the CSS group, he also contributed to
the Document Object Model recommendations. After more than a
decade as a web architect, Apparao has continued his career as a cloud
software executive.

Early Adoption
Before CSS was to become a well-known and proven technology, a few
early web sites would need to take the plunge and update their old
HTML3 web sites with inline styles to a more “pure” CSS-based layout
and theme.

The �irst of these very public web site migrations was Wired News.
On October 11, 2002, Wired News announced their redesign, including
conformances to web standards and technologies including XHTML and
an all-CSS layout. Eric Meyer had this to say:

This new design is more accessible, faster to download, more �lexible
and much easier on the Web server itself. Anyone interested in the
future of the Web need look no further than this.24

While Wired was making their big announcement, another team at
ESPN was working hard on their new web site. Announced just 4
months later, their big victory was the (nearly) tableless layout.25 By
proving that building sites with CSS-based (instead of table-based)
layouts could work for sites receiving millions of monthly pageviews,26

these two web sites helped solidify the place of CSS as a powerful web
standard.

Early Advocates
Without early advocates to inform and educate web developers, we
might have a very different Web today. A large number of developers,
including the authors of this book, were educated and inspired by these
advocates, and this book does not stand alone but builds upon their
years of work.

A List Apart

The very �irst major effort for web and CSS education and advocacy got
its start as an e-mail list. A List Apart was founded in 1997 by Jeffrey
Zeldman, who was soon joined by Eric Meyer. This early mailing list has
grown into an entire ecosystem, including books and conferences,
which continue to be in�luential to this day.

Jeffrey Zeldman
Jeffrey Zeldman started his career in web design in 1995, after a decade
in advertising copywriting. The year after starting A List Apart, he
cofounded the Web Standards Project (WaSP) along with George Olsen
and Glenn Davis, starting a career-long push for open web standards.
Zeldman was inducted into the SXSW Interactive Hall of Fame in 2012
and was the �irst person to ever receive the honor.27

Eric Meyer
Along with Håkon Wium Lie and Tim Boland, Meyer developed the very
�irst test suite for CSS1 which was intended to help assess conformance
to the standard. He joined WaSP the same year and cofounded its CSS
Action Committee. Meyer has written six books on CSS along with
countless articles for some of the most in�luential web design
publications, including A List Apart. He also founded the css-discuss
mailing list, and cofounded An Event Apart with Jeffrey Zeldman. In
2006 Meyer was inducted into the International Academy of Digital
Arts and Sciences for his international work on HTML and CSS.

CSS Zen Garden
In 2003 a magical new web site was launched which demonstrated the
power of CSS. CSS Zen Garden had a unique approach – it provided a
�ixed HTML document which designers were encouraged to style and
theme as much as they wanted, using nothing but CSS (and images). By
preventing edits to the HTML, web designers were forced to decouple
their design implementations and the result was magical. The �irst few
themes were provided by the site author, Dave Shea, but soon designers
around the world were submitting their themes for consideration. This
provided a powerful, hands-on lab that proved once and for all that CSS
had a place as a �irst-class citizen of the web ecosystem.

In 2005 Dave collaborated with Molly Holzschlag to produce a book,
The Zen of CSS Design, which sold over 70,000 copies and became the
international standard for web design for some time.28

Dave Shea
Shortly before launching the CSS Zen Garden, Dave Shea started a
weblog about web design titled mezzoblue. For the next few years, he
became a proli�ic blogger, providing valuable insights on a wide range
of topics. Shea was active in the Web Standards Project as well as
writing for A List Apart.29

Molly Holzschlag
While the Web was being conceived at CERN, Molly Holzschlag was
launching her career in Internet technology. She published her �irst
book on web design in 1996, going on to write more than 35 books on
web technology and design. She has been widely recognized as one of
the most in�luential women on the Web.

Holzschlag has worked directly with CERN, AOL, Microsoft, BBC,
eBay, Opera, and Netscape to ensure browsers support modern
standards. She has been project leader for WaSP, chair of the W3C CSS
Accessibility Community Group, and a W3C invited expert to both the
Internationalization Guidelines, Education & Outreach Working Group,
and the HTML Working Group.30

CSS-Tricks
It is unlikely that anyone reading this book has performed a search for
answers about CSS without coming across the CSS-Tricks web site
created by Chris Coyier. For more than a decade, this web site has been
sharing practical tips and tricks about CSS and other web development
topics.

Chris Coyier
In 2007 Chris Coyier founded CSS-Tricks as a personal blog about CSS.
Today the web site hosts articles from a large number of web
developers and designers, including many listed in this chapter.
Together with Tim Sabat and Alex Vazquez, Coyier founded CodePen, a
very popular online code editor and sharing platform.31

CSS Today
The CSS Working Group at the W3C is still going strong under fantastic
leadership. The current modular approach to CSS level 3, along with a
new trend of evergreen browsers, has led to a steady pace of progress.
The following are a handful of active and in�luential people who, in
addition to many of those already mentioned, are continuing to
improve the state of CSS.

Rachel Andrew
Rachel Andrew is the author of more than 20 books about web
development. She was a member of WaSP and is an invited expert to
the W3C CSS Working Group. She is a Google Developer Expert,
contributor to A List Apart, and the Editor in Chief of Smashing
Magazine.32

Jen Simmons
Jen Simmons is a designer and advocate at Mozilla, where she works on
Firefox speci�ically the Grid Inspector. She has spoken at many
conferences, including An Event Apart and SXSW. Simmons is an active
member of the W3C CSS Working Group where she has been extremely
in�luential in the design and deployment of CSS grid layout. She has
been an active web developer since 1998 and her clients have included
CERN, the W3C, and Google.33

Nicole Sullivan
Nicole Sullivan is a popular speaker, with her conference appearances
including An Event Apart and SXSW. She has coauthored two books on
web performance and is an advocate for CSS and web standards.
Sullivan started the Object-Oriented CSS (OOCSS) project which
provides an architectural framework for CSS. Along with Nicholas Zakas
she also created CSS Lint, a tool which helps catch common CSS
errors.34

Miriam Suzanne
Miriam Suzanne is a project manager, user-experience designer, and
front-end architect. An accomplished writer and novelist, she authored

1

2

3

4

Jump Start Sass and is a staff-writer for CSS Tricks. Suzanne is a
member of the Sass core team, and creator of popular open-source
tools including Susy, True, and Herman. She is an Invited Expert with
the W3C CSS Working Group and a teacher for the Mozilla Developer
channel, producing resources for web professionals including tools,
videos, articles, and demos. Suzanne is an international conference
speaker and in 2017 she won the “Best Of” speaker award at CSS Dev
Conference.35

Summary
In this chapter you’ve learned about the history of CSS, how it has
developed into a programming language, and how CSS �its into the
construction of a web page. Speci�ically, you’ve learned:

The names of the various parts of a CSS ruleset
That CSS is a programming language and why this is important
How a user agent such as a web browser applies CSS to a web page

In the next chapter you will get a review of the basic CSS language
features, with special attention to advanced and less commonly used
language features.

Footnotes
Bert Bos (December 17, 2016). A brief history of CSS until 2016. WorldWideWeb Consortium.

Retrieved August 9, 2019, from www.w3.org/Style/CSS20/history.html

WorldWideWeb Consortium. HTML & CSS. Retrieved July 30, 2019, from

www.w3.org/standards/webdesign/htmlcss

Lara Schenck (May 25, 2019). Is CSS Turing Complete? Retrieved July 31, 2019, from

https://notlaura.com/is-css-turing-complete/

Dijkstra, Edsger W (August 30, 1974). On the role of scienti�ic thought. Retrieved August 12,

2019, from

http://www.w3.org/Style/CSS20/history.html
http://www.w3.org/standards/webdesign/htmlcss
https://notlaura.com/is-css-turing-complete/

5

6

7

8

9

10

11

12

13

14

www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html

W. P. Stevens, G. J. Myers and L. L. Constantine, “Structured Design,” in IBM Systems Journal,

vol. 13, no. 2, pp. 115-139, 1974. doi: 10.1147/sj.132.0115

RationalWiki. (July 2, 2019). Technobabble. Retrieved July 30, 2019, from

https://rationalwiki.org/wiki/Technobabble

Cof�in, J. (December 16, 2015). Cohesion and Coupling: Principles of Orthogonal, Object-

Oriented Programming. Retrieved July 30, 2019 from
https://medium.com/@jasoncof/9bf1eb92a2e5

Jonathan Schaffer (2015). What Not to Multiply Without Necessity, Australasian Journal of

Philosophy, 93:4, 644–664, doi:10.1080/00048402.2014.992447

https://rationalwiki.org/wiki/Logical_razor

Potch (May 9, 2017). Quantum Up Close: What is a browser engine? Mozilla Hacks.

Retrieved August 12, 2019, from https://hacks.mozilla.org/2017/05/quantum-
up-close-what-is-a-browser-engine/

www.holovaty.com/writing/136/

https://stopdesign.com/archive/2002/10/11/finally-were-live.html

https://mikeindustries.com/blog/archive/2003/06/espn-interview

www.holovaty.com/writing/192/

www.w3.org/standards/history/css3-mediaqueries

www.w3.org/standards/history/css-style-attr

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html
https://rationalwiki.org/wiki/Technobabble
https://medium.com/%2540jasoncof/9bf1eb92a2e5
https://rationalwiki.org/wiki/Logical_razor
https://hacks.mozilla.org/2017/05/quantum-up-close-what-is-a-browser-engine/
http://www.holovaty.com/writing/136/
https://stopdesign.com/archive/2002/10/11/finally-were-live.html
https://mikeindustries.com/blog/archive/2003/06/espn-interview
http://www.holovaty.com/writing/192/
http://www.w3.org/standards/history/css3-mediaqueries
http://www.w3.org/standards/history/css-style-attr

15

16

17

18

19

20

21

22

23

24

25

26

www.w3.org/standards/history/css-shapes-1

www.w3.org/standards/history/css-variables-1

www.w3.org/standards/history/css-flexbox-1

www.w3.org/standards/history/css-grid-1

www.w3.org/standards/history/css-scrollbars-1

www.w3.org/standards/history/selectors-3

www.w3.org/standards/history/css-writing-modes-3

http://web.archive.org/web/20000817100343/http://odur.let.rug.nl/

~bert/stylesheets.html

https://dev.opera.com/articles/css-twenty-years-hakon/

www.holovaty.com/writing/136/

www.holovaty.com/writing/192/

https://stopdesign.com/archive/2002/10/11/finally-were-live.html

http://www.w3.org/standards/history/css-shapes-1
http://www.w3.org/standards/history/css-variables-1
http://www.w3.org/standards/history/css-flexbox-1
http://www.w3.org/standards/history/css-grid-1
http://www.w3.org/standards/history/css-scrollbars-1
http://www.w3.org/standards/history/selectors-3
http://www.w3.org/standards/history/css-writing-modes-3
http://web.archive.org/web/20000817100343/http://odur.let.rug.nl/%257Ebert/stylesheets.html
https://dev.opera.com/articles/css-twenty-years-hakon/
http://www.holovaty.com/writing/136/
http://www.holovaty.com/writing/192/
https://stopdesign.com/archive/2002/10/11/finally-were-live.html

27

28

29

30

31

32

33

34

35

www.austinchronicle.com/screens/2012-03-02/where-no-man-has-gone-

before/

http://daveshea.com/projects/zen-book/

http://thewebahead.net/guest/dave-shea

www.computerhope.com/people/molly_holzschlag.htm

https://chriscoyier.net/

https://rachelandrew.co.uk/

https://aneventapart.com/speakers/jen-simmons

https://aneventapart.com/speakers/nicole-sullivan

www.miriamsuzanne.com/who/

http://www.austinchronicle.com/screens/2012-03-02/where-no-man-has-gone-before/
http://daveshea.com/projects/zen-book/
http://thewebahead.net/guest/dave-shea
http://www.computerhope.com/people/molly_holzschlag.htm
https://chriscoyier.net/
https://rachelandrew.co.uk/
https://aneventapart.com/speakers/jen-simmons
https://aneventapart.com/speakers/nicole-sullivan
http://www.miriamsuzanne.com/who/

(1)

© Martine Dowden and Michael Dowden 2020
M. Dowden, M. Dowden, Architecting CSS
https://doi.org/10.1007/978-1-4842-5750-0_2

2. Rules and Selectors

Martine Dowden1 and Michael Dowden1

Brownsburg, IN, USA

While you may already be familiar with the basics of CSS, this chapter
provides a quick overview of the language features at your disposal
when making architectural decisions. An important part of software
architecture is having a deep understanding of the tools and methods
available to accomplish various tasks to achieve our system goals.

Selectors
As we saw in Chapter 1, selectors are the part of a CSS ruleset that
determine exactly which elements get style declarations applied.
Pro�icient use of selectors can go a long way toward decoupling HTML
and CSS making for robust and consistently styled web sites and web
applications.

Basics
The basic selectors allow elements to be selected based upon their
obvious qualities as rendered in HTML: tag names, attributes, and class
names. The CSS selector syntax is so expressive that there is a DOM
function querySelector which accepts a CSS selector string to locate
elements in the DOM tree. See Chapter 8 for more about JavaScript.

Universal Selector
The * in CSS is a universal selector that matches every element on the
page. Sometimes this can be helpful, such as Listing 2-1 and Figure 2-1,

https://doi.org/10.1007/978-1-4842-5750-0_2

which adds a visible indicator to any element selected with the
keyboard.

*:focus {

 outline: 1px dotted grey;

}

Listing 2-1 Outline Selected Elements

Figure 2-1 Universal Selector

However, this convenience comes at a cost – the universal selector
effectively short-circuits inheritance for the associated declarations.

Unless you have a speci�ic use case, it’s generally best to avoid the
universal selector in favor of inheritance. It’s also a good idea to use the
universal selector in combination with other selectors.

One use case for the universal selector is to apply a declaration to all
children of another element, even if that property wouldn’t be
inherited, such as a border. For this use case, consider either custom
properties or mixins as an alternative to this approach.

Type Selector
Selecting an element in CSS can be as simple as using the tag name. This
is called the type selector , and all HTML tags are valid selectors.

The example in Listing 2-2 and Figure 2-2 adds padding to all
paragraph elements.

p {

 padding: 0.5rem;

}

Listing 2-2 Add Padding to Selected Elements

Figure 2-2 Type Selector

Class Selector
To select an element by its class, simply use a dot followed by the class
name, such as .example. Since an HTML element can have multiple
classes, multiple class selectors may be combined, and they can also be
combined with element selectors. See Listings 2-3 and 2-4. Output is
shown in Figure 2-3.

<body>

 <div>

 <p>Lorem Ipsum...</p>

 <img class="outline" src="image.png"

alt="art">

 <button class="outline">Cancel</button>

 <button id="ok" class="outline

bold">OK</button>

 </div>

</body>

Listing 2-3 Selector HTML

img {

 width: 200px;

}

button {

 background-color: lightblue;

}

button.outline {

 border: 1px solid green;

}

button.outline.bold {

 border: 5px solid darkgreen;

}

Listing 2-4 Class Selector CSS

Figure 2-3 Class Selector

In this example, the element does not receive a border due
to the type selector. The OK button has a thicker, darker border than the
Cancel button.

ID Selector
The ID selector # selects an element based upon its ID attribute. Note
that the use of duplicate IDs on a single page is not valid for HTML, so
this selector is expected to match either 0 or 1 elements. The example
in Listing 2-5 uses the HTML from the previous example in Listing 2-3.
Figure 2-4 illustrates the output.

img {

 width: 200px;

}

#ok {

 font-size: 1.5rem;

 font-weight: bold;

}

p#ok {

 color: pink;

}

Listing 2-5 ID Selector CSS

Figure 2-4 ID Selector

This will make the button text bold on the OK button. The example
shows that the ID selector may be combined with type selectors in the
same way as the class selector. By combining these selectors in a way
that doesn’t match the HTML, the contents of the paragraph tag will not
become pink in this example.

Attribute Selector
The attribute selector matches an element based upon one of its
attributes. This selector uses square brackets to contain the attribute
match and may be optionally combined with a type selector. For
example, a [rel] can be used to match all anchor tags with a
provided relationship. To allow <area> tags to also match, use [rel]
by itself.

In addition to testing for the presence of an attribute, this selector
can test for speci�ic values as shown in Listings 2-6 and 2-7 and Figure
2-5.

<body>

 <h1>Attribute Selector</h1>

 <form>

 <button href="" title="go back">

 <i class="material-icons">arrow_back_ios</i>

 Previous

 </button>

 <label>

 Username

 <input type="text" >

 </label>

 <label>

 Password

 <input type="password" >

 </label>

 <label>

 Avatar

 <input type="file" accept="image/png">

 </label>

 <button href="" title="Continue">

 Next

 <i class="material-

icons">arrow_forward_ios</i>

 </button>

 </form>

 <blockquote cite="w3.org">

 The World Wide Web Consortium (W3C) is an...

 </blockquote>

 <blockquote

cite="https://en.wikipedia.org/wiki/Wikipedia">

 Wikipedia is a multilingual online

encyclopedia...

 </blockquote>

 PDF File

 Word Doc

</body>

Listing 2-6 Attribute Selector HTML

label, input, a, button {

 display: block;

 margin-bottom: 1rem;

}

button {

 display: flex;

 align-items: center;

}

/* Matches password input fields */

input[type="password"] {

 color: red;

}

/* Strikes out any quotes cited from Wikipedia */

blockquote[cite*="wikipedia.org"] {

 text-decoration: line-through;

}

/* Underlines any element with a title attribute

containing

 the word "continue" with any Capitalization.

*/

[title*="continue"] i {

 text-decoration: underline;

}

/* Display a gray border around any input which

has an

 accept starting with image, such as image/png

*/

input[accept^="image"] {

 border: solid 4px gray;

}

/* Display a PDF icon beside any .pdf download

links */

a[href$=".pdf"]::before {

 content: url(icon-pdf.png);

}

/* Matches a material design icon such as <i

class="material-icons">arrow_back_ios</i> */

i[class|="material-icons"] {

 color: blue;

 width: 32px;

}

Listing 2-7 Attribute Selector CSS

Figure 2-5 Attribute Selector

Because class and ID are both HTML attributes, the class and ID
selectors have attribute selector equivalents, shown here in Table 2-1.

Table 2-1 Attribute Selector Equivalents

 Basic Selector Attribute Selector

Select by ID #contactForm [id=contactForm]

Select by Class .outline [class~="outline"]

Grouping To minimize duplication of declaration blocks, selectors
can be grouped together into a comma-delimited list. For example,
a, button { ... } would apply the declaration block to both
anchor and button elements in the HTML.

Combinators

We’ve already seen how to combine type selectors with class and ID
selectors, but what if we want to combine multiple type selectors or
even attribute selectors? There are a few other combinators to make
this possible, and they even provide for hierarchical context based upon
the elements’ relationship within the DOM. Examples of the
combinators in Table 2-2 can be found in Listings 2-8 and 2-9 and
Figure 2-6.

Table 2-2 Combinators

Name Combinator Example Description

Descendant " "

(space)

nav a All anchor tags inside of a nav element

Child ">" nav > ul

> li

First list items inside a navigation list, ignoring any
items after the �irst level

Sibling "~" p ~ p All paragraphs (after the �irst) that share the same
parent element

Adjacent
Sibling

"+" h2 + p All paragraphs that immediately follow an <h2> tag
on the same hierarchy

<body>

 <h1>Combinators</h1>

 <nav>

 Home

 Combinators

 " " (space)

 >

 ~

 +

 </nav>

 <main>

 <h2>List of Combinators</h2>

 <p>There are a few other combinators to make

this...</p>

 " " (space)

 nav li

 nav a

 >

 ~

 +

 <p>By combining selectors together we can

select...</p>

 </main>

</body>

Listing 2-8 Combinators HTML

nav a {

 display: block;

 margin: 0 1rem;

}

nav > ul > li {

 border: solid 1px gray;

 display: inline-block;

 list-style-type: none;

 vertical-align: top;

}

p ~ p {

 color: purple;

 font-weight: bold;

}

h2 + p {

 font-family: sans-serif;

}

Listing 2-9 Combinators CSS

Figure 2-6 Combinators

By combining selectors together, we can select elements to style
based upon their natural location and ordering within an HTML
document. This can help us separate concerns between layout, theming,
and content for more manageable rulesets.

Pseudo Elements
Pseudo elements allow you to select elements that do not exist within
the HTML document, but show on the screen visually. Both ::first-
letter and ::first-line select a portion of text within an
element.

While the effect of ::first-letter could be reproduced by
adding a tag around the desired letters, for �luid layouts there
is actually no other way to select the entire �irst line of a text block than
::first-line. This is because this rule is applied after the layout
has been calculated so that the browser knows which words should be
affected by the rule. See Listings 2-10 and 2-11 and Figure 2-7.

<body>

 <h1>Pseudo Elements</h1>

 <p>Lorem ipsum dolor sit amet, consectetur...

</p>

 <p>Cras id blandit risus. Nunc dictum, elit...

</p>

 <p>Quisque euismod tempus erat, sit amet

pharetra...</p>

</body>

Listing 2-10 Pseudo Elements HTML – ::�irst-line and ::�irst-level

p::first-letter {

 color: red;

 font-size: 3rem;

 line-height: 0;

 display: block;

 float: left;

 margin-top: .125rem;

 margin-right: .5rem;

}

p::first-line {

 color: red;

}

Listing 2-11 Pseudo Elements CSS – ::�irst-line and ::�irst-level

Figure 2-7 Pseudo Elements – ::�irst-line and ::�irst-level

The ::after and ::before pseudo elements use the content
property to insert content (either text or an image) based upon speci�ic
criteria. We see this in action in Listings 2-12 and 2-13 and Figure 2-8.

<body>

 <a href>First Link

 <a href>Second Link

 <a href>Third Link

</body>

Listing 2-12 Pseudo Elements HTML – ::before and ::after

a {

 display: block;

}

a::before {

 content: url(link.png);

 display: inline-block;

 margin-right: .5rem;

 vertical-align: middle;

}

a::after {

 content: ' (link)'

}

Listing 2-13 Pseudo Elements CSS – ::before and ::after

Figure 2-8 Pseudo Elements – ::before and ::after

Have you ever wanted to customize the placeholder text on an input
element? You can do that with input[type=text]::placeholder
(see Listings 2-14 and 2-15 and Figures 2-9 and 2-10).

<form>

 <label>

 Username:

 <input type="text" placeholder="Example:

user@email.com">

 </label>

</form>

<video width="100%" height="250" controls>

 <source src="" type="video/mp4">

</video>

Listing 2-14 Pseudo Elements HTML – ::placeholder, ::selection, and ::backdrop

input {

 box-sizing: border-box;

 border-radius: 4px;

 border: solid 1px gray;

 padding: .5rem 1rem;

 font-size: 1rem;

 width: 100%;

}

input[type=text]::placeholder {

 font-family: cursive;

}

::selection {

 background-color: cornflowerblue;

 color: white;

}

::backdrop {

 background: cornflowerblue;

}

Listing 2-15 Pseudo Elements CSS – ::placeholder, ::selection, and ::backdrop

Figure 2-9 Pseudo Elements – ::placeholder and ::selection

Figure 2-10 Pseudo Elements – ::backdrop

Have you selected text on a web site and noticed that the selection
highlight was in the site’s brand colors? This can be accomplished with
*::selection {background-color: cornflowerblue}.

The background in full-screen browsing mode can be customized
using ::backdrop.

Both are also seen in the preceding example.

Note The CSS speci�ication calls for a two-colon pre�ix before a
pseudo element, such as ::after. However, most browsers support
pseudo elements with just a single colon (:after) without
throwing an error. It is likely that you will see this usage in the style
sheets you encounter and it is important to understand why it
works. In general, we recommend the standard two-colon pre�ix for

two reasons: (1) it adheres to the CSS speci�ication and (2) it clearly
distinguishes pseudo elements from pseudo classes.

Pseudo Classes
Pseudo classes select elements based upon information that is not
available in the HTML document. This may include state or context
metadata.

Some of the pseudo classes make it possible to adjust styles based
upon user interaction.

:hover – Match when an element is being hovered over (such as
using the mouse)
:focus – Match an element selected with the keyboard (by
tabbing), or with the mouse (by clicking the element)
:active – Match an element in the process of being activated
(such as clicking, while the mouse button is depressed)
:target – Select an element that has an ID matching the URL’s
fragment (the portion after the #)

Displaying tabular data with beautiful formatting is made easy with
the positional pseudo classes. Select the �irst and last rows of a table
with tr:first-of-type and tr:last-of-type, respectively. Use
the same technique to select the �irst and last columns using <td>.
Highlight every other row using tbody > tr:nth-child(even).

Managing forms and showing helpful indicators can use some of the
following pseudo classes:

:in-range, :out-of-range – Numeric value compared to
de�ined range
:placeholder-shown – If the placeholder text is currently
visible
:invalid, :valid – Checks the validation status of form �ields for
error and success indicators
:checked, :indeterminate – Used to select a checkbox or radio
button that is currently selected or if the selected option cannot be
determined

:default – Matches only if this element is the default in a group of
elements (such as the default submit button or the default radio
option on a form)
:disabled, :read-only, :read-write – Matches the current
status of a form �ield based on availability to user interaction
:optional, :required – Matches �ields based upon their
required status

Another important pseudo class is the :not() selector, which
select elements that do not match a list of selectors. While many of the
pseudo classes have their inverse state de�ined (e.g., :optional vs.
:required), there are many other scenarios where negation can be
useful. For example, you can select every direct child tag of an
<article> that is not an by using article > *:not(img)
{ ... }.

Many of these pseudo classes provide capabilities to CSS that would
otherwise require JavaScript involvement in designing the user
experience. By leveraging CSS for context-sensitive UI implementation,
we keep application and view logic separate, improving the
maintainability and performance of our web sites and web applications.
Examples of some of the previously mentioned pseudo classes can be
found in Listings 2-16 and 2-17 illustrated in Figure 2-11.

<body>

 <h1>Pseudo Classes</h1>

 <table>

 <thead>

 <th>Name</th>

 <th>Email</th>

 <th>Zip Code</th>

 </thead>

 <tbody>

 <tr>

 <td>Jane</td>

 <td>jane@email.com</td>

 <td>15978</td>

 </tr>

 <tr>

 <td>John</td>

 <td>john@email.com</td>

 <td>11458</td>

 </tr>

 <tr>

 <td>Alex</td>

 <td>alex@email.com</td>

 <td>68978</td>

 </tr>

 </tbody>

 </table>

 <form>

 <label>

 Name:

 <input type="text" maxlength="20" required>

 </label>

 <label>

 Email

 <input type="email" maxlength="100"

required>

 </label>

 <label>

 Zip Code:

 <input type="number" max="99999">

 </label>

 <button type="submit">Submit</button>

 </form>

</body>

Listing 2-16 Pseudo Classes HTML

table {

 border-collapse: collapse;

 margin-bottom: 1rem;;

 width: 100%;

}

tr {

 border-top: solid 1px lightgrey;

 border-bottom: solid 1px lightgrey;

}

tbody tr:nth-last-of-type(odd) {

 background: lightblue;

}

th, td {

 padding: .5rem 1rem;

 text-align: left;

}

form {

 margin-top: 2rem;

}

form > *:not(button) {

 border-radius: 4px;

 box-sizing: border-box;

 display: block;

}

label {

 margin-bottom: .5rem;

}

input {

 border: solid 1px lightblue;

 padding: .5rem 1rem;

 width: 100%;

}

input:hover, input:active {

 border-color: slategray;

}

input:invalid {

 border-left: solid 5px red;

}

input:valid {

 border-left: solid 5px green;

}

button {

 padding: .5rem 1.5rem;

 border: solid 1px lightblue;

 border-radius: 3px;

 background: white;

 margin-top: .5rem;

}

button:hover, button:active {

 outline: dotted 1px blue;

 outline-offset: 2px;

}

Listing 2-17 Pseudo Classes CSS

Figure 2-11 Pseudo Classes

Declarations
Selecting the elements doesn’t do any good if we don’t apply styles to
those elements. The declarations section of each ruleset is where the
individual style properties, and their values, are speci�ied for the
matching elements.

Properties
The properties in CSS refer to the various aspects of layout and style
that can be affected. Many properties are available for some elements
and not others. Sometimes the visibility of a property will depend upon
the display setting of an element. For instance, the height property is
ignored on elements with display: inline, but is rendered on
display: inline-block.

Some of the CSS properties are a shorthand notation for a number
of individual properties. Consider the example in Listing 2-18 where
two declaration blocks produce the same results.

p {

 border-width: 2px;

 border-style: solid;

 border-color: #666666;

}

p {

 border: 2px solid #666666;

}

Listing 2-18 Border Property

Each of the individual border properties is available as an optional
value parameter to the border shorthand property. Some of the other
shorthand properties include background, box-shadow, font,
padding, margin, and outline. Each of these has a different list of
properties they summarize, and they have a speci�ic order in which the
properties should be provided. Be sure to check a reference when using
these until you become comfortable with the syntax of each.

Some property and value combinations may produce results that
seem similar but are actually quite different. Table 2-3 lists a few of
these with an explanation on how they differ.

Table 2-3 Property Disambiguation

First
Property

Second
Property

Description

First
Property

Second
Property

Description

margin:
2px;

padding:
px;

Margin is outside the box model and can be collapsed when adjacent.
Padding is inside the box.

border:
2px solid
black;

outline:
2px solid
black;

Border adds to the box model dimension and exists between margin
and padding. The outline exists outside the border and takes up no
space on the box.

visibility:
hidden;

display:
none;

A hidden element still exists on the page and can take up space and
receive events. An element that is not displayed effectively doesn’t exist
in the render tree.

The outline property is very useful for highlighting elements on
the screen where you do not want the item to re�low. This is commonly
used to highlight elements in combination with the :focus pseudo
class. See Chapter 4 for details of the box model, as well as on
properties related to layout, including display, grid, and flex.

A comprehensive review of the available CSS properties and values
is outside of the scope of this book. For an excellent reference, we
recommend the MDN CSS Reference from Mozilla, which can be found
at
https://developer.mozilla.org/docs/Web/CSS/Referen

ce.

Units
There are a number of CSS properties that expect a <length> data
type. This length is a scalar (numeric) value with an associated unit of
measure. Selecting the correct units can make the difference between a
nice �luid, responsive layout and one that breaks anytime the user
resizes the window or zooms. The correct units can also have a
tremendous impact on the amount of work it takes to achieve certain
layouts.

There are three basic categories of units that we’ll discuss. The �irst
category includes absolute measures that are established at the time of
the design. The second category is font-relative, meaning that if the
user zooms the page or changes their default font size, the meaning of
these values will change relative to one another. And the third category
contains viewport-relative lengths, meaning they will change relative to
the browser size or the speci�ic display on the user’s device.

https://developer.mozilla.org/docs/Web/CSS/Reference

Absolute
px – The traditional unit of measure for computer graphics; this is only
suitable for screen-based displays.

in –Inch. 1in. = 6pc = 72pt = 2.54cm. This will be a true inch on
printers, but de�ined relative to a reference pixel for screens which is
96px regardless of the screen resolution.

pc – Pica. A traditional unit of measure in typography.
pt – Point. A traditional unit of measure in typography.
cm – Centimeter. 1cm = 10mm. See the earlier note on inches

relating to printers and screens.
mm – Millimeter.

Note Absolute units of measure do not scale relative to user
settings such as font-size. As a result, the use of these units
(especially on-screen) is likely to cause signi�icant issues for
accessibility and is not recommended.

Font-Relative
ch – Represents the width of the “0” character in the element’s font
(consisting of both typeface and size).

ex – Represents the height of the “x” character in the element’s font
(consisting of both typeface and size).

em – The calculated font-size of the element. If this unit is used
on the font-size property, it will be relative to the inherited font-
size.

rem – Exactly the same as em, but always relative to the font-
size of the root element (which is the <html> for HTML documents).
This is the preferred default unit for many web designers as it allows
for manageable �luid layouts while addressing accessibility concerns.

Viewport-Relative
vh – Equal to 1% of the height of the viewport

vw – Equal to 1% of the width of the viewport
vmin – Equal to the smaller of vh or vw

vmax – Equal to the larger of vh or vw

Percentage
Many CSS properties will accept a <percentage> or a <length-
percentage> (meaning either a length or a percentage). While the
rem is the best choice for many purposes, especially those relating to
content and accessibility, percentage works relative to any inherited
size including font-relative, view-relative, or even absolute units.

Functions
While CSS does not allow user-de�ined functions, there are a large
number of available functions to perform a variety of tasks, some of
which are described as follows:

Shape – There are a number of nonrectangular shapes supported
through the functions circle(), ellipse(), inset(), and
polygon(). Combine with the shape-outside property to wrap
text to a speci�ic shape, or with clip-path to crop an image or
container.

Transformation – There are a large number of transformation
functions, including rotateX(), scale(), and skewY(). There are
also 3D transformations such as perspective(), matrix3d(), and
scaleZ(). These transformations can adjust the shape, orientation,
and position of elements on the screen to create a wide range of visual
effects and layouts.

Gradients – There are a large number of functions to support the
creation of gradients, including linear-gradient(), radial-
gradient(), repeating-linear-gradient(), and
repeating-radial-gradient(). The blending of colors enabled
by gradients supports a large number of visual effects.

Effects – There are other visual effects beyond just gradients. The
blur() function will produce a Gaussian blur on the selected element,
even an image. This can be useful for the backdrop of a modal dialog.
The drop-shadow() adds some dimension to a theme. And
opacity() allows elements to be somewhere between fully opaque
and fully transparent, to allow dimensional overlays. (Note that if you

want opaque text but a semitransparent background, you may want to
consider using the rgba() or hsla() color functions as described in
the following text.)

Color – The most common way of specifying color in CSS is with the
3- or 6-digit hex code preceded by a hash symbol, such as #FF0000 for
the color red. Colors can also be speci�ied by hue, saturation, and
lightness using the hsl() and hsla() functions, or as RGB (red,
green, blue) using rgb() or rgba(). The “a” in each of these function
sets refers to the alpha channel which speci�ies level of opacity or
transparency.

Colors can also be manipulated in a consistent fashion using the
filter property with alterations such as contrast(),
saturate(), and hue-rotate() and effects applied such as
grayscale() or sepia(). These functions are particularly useful
because they can apply to an image as well as text on the page.

Resources – The url() function is used to add image resources to
a design through CSS. This allows the tag in HTML to be reserved
for images that are relevant to the content, rather than to the layout and
design.

Counting – The counting functions counter(), counters(),
and symbols() are used to manage counter variables. See more about
counters in the following “Variables” section.

Math – Sometimes the built-in units aren’t enough and you need to
calculate size or position based upon other elements. The calc()
function makes it possible to do some basic math with a mix of units.
Addition, subtraction, multiplication, and division are supported along
with parentheses. As an example, you could use height:
calc(10vh - 1rem) to calculate the height of a header that was
10% of the viewport height, but accounted for a 1rem border.

Listings 2-19 and 2-20 show the source code for Figure 2-12.

<body>

 <h1>Functions</h1>

 <div class="shape"></div>

 <div class="shape"></div>

 <div class="shape"></div>

</body>

Listing 2-19 Functions HTML

.shape {

 clip-path: polygon(50% 0%, 61% 35%, 98% 35%, 68%

57%, 79% 91%, 50% 70%, 21% 91%, 32% 57%, 2% 35%,

39% 35%);

 display: inline-block;

 position: relative;

 height: calc(100vw / 3);

 width: calc(100vw / 3);

}

.shape:nth-of-type(1) {

 background: rgba(255, 0, 255, 0.31);

 transform: rotate(-25deg);

 filter: saturate(15%);

}

.shape:nth-of-type(2) {

 background: rgb(255,116,0);

 background: linear-gradient(90deg,

rgba(255,116,0,1) 0%, rgba(255,237,0,1) 47%,

rgba(255,167,0,1) 100%);

 filter: opacity(.75);

 transform: translate(0, -50px);

 left: calc((100vw / 3) - 200px);

}

.shape:nth-of-type(3) {

 background: hsl(189, 100%, 50%);

 transform: rotate(25deg);

 opacity: .33;

 left: calc((100vw / 3) - 100px);

 top: -200px;

}

Listing 2-20 Functions CSS

Figure 2-12 Functions

The example shown in Figure 2-12 highlights a number of functions.
The position of the stars in the example is dependent upon the size of
the browser window since calculations are based upon the vw and vh
units.

Variables
There are a few ways to use dynamic data within CSS (examples found
in Listings 2-21 and 2-22 and Figure 2-13):

Custom properties – These variables are de�ined much like any
other CSS property and can contain any value that would be legal in
CSS. They can then be referenced later in a style sheet using the var()
function.

Attributes – Using the attr() function , you can pull in the value
from an HTML attribute. Combine this with the content property to
display attribute data in unique ways.

Counters – Every HTML element can have 0 to many named
counters associated within the document tree and manipulated using

CSS. HTML lists generate a “list-item” counter automatically,
incrementing by 1 with every list element unless explicitly reset. This
also includes unordered lists. Use counter-set, counter-
increment, or counter-decrement properties to adjust the
counters and use counter() or counters() to display the value of a
named counter in a way you choose. This exists to support nested lists,
but may have many other uses.

<body>

 <h1>Variables</h1>

 <li category="fruit">Apple

 <li category="vegetable">Lettuce

 <li category="starch">Corn

</body>

Listing 2-21 Variables HTML

ul {

 counter-reset: li;

}

li:before {

 content: counter(li)"-" attr(category)": ";

 counter-increment: li;

 text-transform: capitalize;

 background: lightblue;

 display: inline-block;

 padding: .5rem 1rem;

 border-radius: 25px;

 margin: 0 1rem 1rem 0;

}

Listing 2-22 Variables CSS

Figure 2-13 Variables

At-Rules
The CSS at-rules (so-named because of the @ or “at” symbol in the
name of each) are language features that provide some control over the
structure of your styles. Among other things these rules provide a
mechanism for collecting or grouping other rulesets.

@import
In Chapter 1 we looked at three ways to include CSS in an HTML
document, including the <link> element. The @import at-rule
provides a similar function for CSS. Both of these include pull
mechanisms in a CSS �ile, effectively inserting its contents at the
position of the import statement.

This is very useful as it allows us to break up style sheets into more
logical and manageable �iles without any impact on the HTML
document. See Chapter 7 for a more in-depth discussion of @imports
along with other mechanisms for pulling in external style sheets.

@supports
The @supports at-rule allows rules to be applied based upon speci�ic
support of CSS features by the user agent. This is a way to provide
styling and formatting based upon what a web browser declares
support for, rather than using old-school hacks in an attempt to detect if
a given rule will work as expected.

This at-rule allows you to start taking advantage of the very latest
CSS today, by making it possible to provide alternate rules for cutting-

edge browsers (or perhaps alternate rules for older browsers) such as
in Listings 2-23 and 2-24.

<body>

 <h1>At-Rules</h1>

 <p>Hello World</p>

</body>

Listing 2-23 At-Rules HTML

p {

 text-decoration: underline;

 text-underline-offset: 1rem;

}

@supports not (text-underline-offset: 1rem) {

 p {

 text-decoration: none;

 padding-bottom: 1rem;

 border-bottom: solid 3px orange;

 display: inline-block;

 }

}

Listing 2-24 At-Rules CSS

Because text-underline-offset is supported by Firefox
(Figure 2-14), Firefox ignores the @support not code. Opera,
however, at the time of the writing of this book, does not support
text-underline-offset and therefore uses the fallback code
provided in the @supports not (Figure 2-15).

Figure 2-14 At-Rules, text-underline-offset Supported in Firefox

Figure 2-15 At-Rules, text-underline-offset Not Supported in Opera

@media
The CSS media at-rule is used to perform queries against the system,
environment, or user agent. This use is called a media query .

Media Query “Media Queries allow authors to test and query
values or features of the user agent or display device, independent of
the document being rendered. They are used in the CSS @media
rule to conditionally apply styles to a document, and in various other
contexts and languages, such as HTML and JavaScript.”

—Media Queries Level 41

These media queries can be used to build responsive layouts as
discussed in Chapter 4, but they have many other uses. For example, a
printer-friendly theme can be created that hides navigation and
banners while retaining content as shown in Listing 2-25.

@media print and monochrome {

 nav, .banner { display: none; }

}

Listing 2-25 Printer-Friendly Design

Additional control over printing can be obtained by providing page-
speci�ic instructions using the @page at-rule.2

It’s also possible to adjust the layout for devices that don’t have a
pointing device (such as a mouse) that supports hover, as is common
with tablets and mobile devices. In Listing 2-26, we display the target
URL beside every link, but only on devices that don’t support hover.

1

2

@media (not(hover)) {

 a::after {

 content: attr(href);

 font-size: x-small;

 position: absolute;

 }

}

Listing 2-26 Tablet-Friendly Icon

Summary
This chapter covered the basic building blocks of CSS rulesets. You’ve
learned how to

Specify printer-speci�ic layout and designs
Insert document icons based upon the �ile extension using nothing
but CSS
Combine multiple selectors together into more advanced expressions
Highlight alternating rows on a table
Provide alternate styles based upon browser and device capabilities

The next chapter covers the cascading part of Cascading Style
Sheets and demysti�ies the process by which a user agent decides the
values of every property of every element on the page.

Footnotes
Media Queries Level 4. (August 9, 2019). Retrieved from

www.w3.org/TR/mediaqueries-4/

https://developer.mozilla.org/en-US/docs/Web/CSS/@page

http://www.w3.org/TR/mediaqueries-4/
https://developer.mozilla.org/en-US/docs/Web/CSS/%2540page

(1)

© Martine Dowden and Michael Dowden 2020
M. Dowden, M. Dowden, Architecting CSS
https://doi.org/10.1007/978-1-4842-5750-0_3

3. Order of Importance

Martine Dowden1 and Michael Dowden1

Brownsburg, IN, USA

As mentioned in Chapter 1, one of the important features of CSS is the
ability for the user, browser, and web developer to all exert in�luence
over the �inal output of the page. The user agent, the author, and the
user can all three in�luence the output of the page. To dictate what
property value “wins,” a multistep calculation is performed.

Inheritance
Inheritance is the mechanism by which CSS allows a value set on a
parent element (such as <body>) to propagate to its descendants. This
helps determine what value is used when no property is declared on an
element property. The inherited value is determined by the computed
value of a parent or ancestor. If none exists, the initial value, or default
set by the browser, is used.

Not all property values are inherited by default.1 Properties that do
are generally related to theming such as typography-related properties
(font-size, line-height, letter-spacing, etc.). Layout-related properties
such as display, border, width, and height are generally not. If there is
no declared value on a non-inheritable property, then the initial value is
used. See Listings 3-1 and 3-2 and Figure 3-1.

<body>

 <h1>Inheritance</h1>

https://doi.org/10.1007/978-1-4842-5750-0_3

 <p>Lorem ipsum dolor sit amet, consectetur...

</p>

 <table>

 <tr>

 <th>Lorem Ipsum</th>

 <td>Lorem ipsum dolor sit amet,

consectetur... </td>

 </tr>

 <tr>

 <th>Pellentesque</th>

 <td>Pellentesque sit amet massa auctor

est... </td>

 </tr>

 </table>

 <p>Pellentesque sit amet massa... </p>

</body>

Listing 3-1 Cascading and Inheritance HTML

body {

 color: gray;

 padding: 2rem;

 text-align: justify;

 line-height: 1.5rem;

 font-family: Helvetica, Arial, sans-serif;

 font-weight: lighter;

}

h1 {

 color: slategray;

 font-family: 'Comic Sans MS';

 font-size: 2.5rem;

 letter-spacing: .0625rem;

}

h1 {

 font-family: fantasy;

}

p:first-of-type::first-letter {

 color: gold;

 display: block;

 float: left;

 font-size: 3rem;

 line-height: 0;

 margin: .5rem .5rem 0 0;

}

table {

 border-collapse: collapse;

}

tr {

 color: slategray;

 border-top: solid 1px lightsteelblue;

 border-bottom: solid 1px lightsteelblue;

}

td {

 padding: .5rem 1rem;

}

img {

 margin: 0 0 0 1rem;

 float: right;

 width: 200px;

}

Listing 3-2 Cascading and Inheritance CSS

Figure 3-1 Cascading and Inheritance

The body attribute has a text-align property value of justify.
Styles are not set on paragraph attributes; however, the paragraphs are
in fact justi�ied. The paragraph text-align value is inherited from
the body’s text-align property. Padding however is not inherited,
which is why even though the body selector has a padding value of two
rems, paragraphs, the image, links, and so on do not also have a 2rem
padding value.

One of the main bene�its of inheritance is that it prevents the need
to write values for the same properties over and over again across
different selectors helping with consistency of the styles and
maintainability of the code.

In this example the color is also inherited, but the �irst letter of the
�irst paragraph does not display in gray as set in the body selector, but
in gold as set in the p:first-of-type::first-letter selector.
The reason the �irst letter of the �irst paragraph is gold rather than gray

is a question of speci�icity; p:first-of-type::first-letter is
more speci�ic than body.

Global Values
Inherit, unset , and initial are a little different from the rest of the
property values available in CSS. These values are available on all
properties and have the distinct difference of either resetting a value to
default or to that of an ancestor rather than a new value. These values
give you explicit control over how a property is inherited.

Examples for inherit , unset, and initial are based on the
code found in Listings 3-3 and 3-4.

<body>

 <h1>Exceptions</h1>

 Cursive

 Unset

 Initial

 Inherit

 <p>1 Lorem ipsum dolor sit amet, consectetur...

</p>

 <p>2 Pellentesque sit amet massa auctor est...

</p>

 <p>3 Duis vitae iaculis risus. Vivamus id

egestas... </p>

 <p>4 Mauris vel mi quis lorem laoreet aliquet...

</p>

</body>

Listing 3-3 Exceptions HTML

body {

 font-family: sans-serif;

 padding: 10px;

}

p {

 padding: 20px;

 border: dashed 1px gray;

}

p::first-letter {

 display: block;

 float: left;

 font-size: 3rem;

 color: red;

}

p:nth-of-type(2) { padding: unset }

p:nth-of-type(3) { padding: default }

p:nth-of-type(3) { padding: initial }

p:nth-of-type(4) { padding: inherit }

li { font-family: cursive; }

li:nth-of-type(2) { font-family: unset; }

li:nth-of-type(3) { font-family: initial; }

li:nth-of-type(4) { font-family: inherit; }

Listing 3-4 Exceptions CSS

Unset
Unset works differently depending upon the property to which it is
being assigned. If the value can be inherited from the parent, it will
inherit; otherwise, it will set the property value to initial.

In the case of the list item, since font-family can be inherited,
the second list item will have a font-family of sans-serif. The
value is inherited from body, it’s parent container (see Figure 3-2).

Figure 3-2 Inherited Unset

Because padding is not inheritable, padding gets set to 0 on the
second paragraph tag because the initial padding value on a paragraph
tag is 0 (see Figure 3-3).

Figure 3-3 Unset on a Non-inheritable Property

Initial

The initial value for a property may be set by the browser and can vary
depending on the user agent. If an initial value is declared in the CSS
speci�ication, then initial should return that value. Most modern
browsers are consistent but mileage may vary. For example, in Firefox
the default value for font-family is serif . Therefore, the third list
element font-family value is serif (see Figure 3-4).

Figure 3-4 Initial

Inherit

The property value will equate that of the parent’s property whether
the property is by default inherited or not. Padding is not inherited.
Even so, when inherit is set on the padding property of the fourth
paragraph tag, the paragraph tag takes the value set to its parent
<body>. Body has a padding value of 10px; therefore, the paragraph
also does. See Figure 3-5.

Figure 3-5 Inherit

As this example shows, we can force inheritance through the use of
the inherit property, giving us direct control over the cascade.

Speci�icity
There is an order of importance given to the various types of selectors,
based upon how speci�icity is calculated. There are four categories of
importance summarized in Table 3-1, each of which is an order of
magnitude more important than the one below it.

Table 3-1 Selector Ranking

Category Selectors

A ID selectors

B Class selectors, attribute selectors, pseudo classes

C Type selectors, pseudo elements

0 Universal selector

The speci�icity of any given selector is calculated as a three-digit
number, with the digits A, B, and C, where A, B, and C represent the total
number of selectors of their category.2 Several examples are shown in
Table 3-2.

Table 3-2 Calculating Speci�icity

Example Selector A B C Speci�icity

* 0 0 0 0

button 0 0 1 1

ul li 0 0 2 2

button:not([type=submit]) 0 1 1 1 1

a[href$=".pdf"]::before 0 1 2 1 2

button.outline.bold 0 2 1 2 1

button#submit 1 0 1 1 0 1

Speci�icity plays an important role in determining which styles will
get applied during the cascade.

Inline Styles Styles applied directly to the element in the HTML
such as

<p style="margin-left: 10px">Lorem ipsum am

met...</p>

are inline styles. They are the equivalent of adding property values
directly in the DOM with the use of JavaScript. Inline styles are given
a speci�icity of [1 0 0 0],3 which is higher than anything possible
using normal selectors, as shown in Table 3-2. Inline styles are
generally considered bad practice because they ignore inheritance
and cascading. There are a few exceptions where they may be
unavoidable though, including HTML e-mails.

Precedence
The order in which rules are applied matters. Directly targeted rules
will always take precedence over rules which inherited from a parent
or ancestor. If two rules with the same level of speci�icity are applied,
the last one in order will be applied. This concept lies at the core of CSS
and has since its inception, as indicated by its name “Cascading Style
Sheets.”

!important The !important annotation is well known among
CSS practitioners as both a powerful tool and a great liability. It’s
sometimes used by web developers to force a style to take effect
when nothing else seems to work. But did you know that the purpose
of !important is actually to improve accessibility? Because
important user declarations always have the highest precedence, it
gives the user the �inal say on which properties and values are set
when the page is rendered.

As well as speci�icity , the source of the rule is also a factor in
determining the value used by the element. Table 3-3 shows the order
in which rules are applied during cascading, in order from least to most
important.

Table 3-3 Order of Cascading4

Order Origin Importance Precedence

1 User Agent Normal 8

2 User Normal 7

3 Author Normal 6

4 Animations 5

5 Author !important 4

6 User !important 3

7 User Agent !important 2

8 Transitions 1

In cascading, the last item to be applied wins; therefore, transitions
will win over user agent !important containing rules over user
!important rules and so forth.

Cascading
Cascading represents the way properties and values from a variety of
sources, at varying levels of precedence and speci�icity, come together
to determine the �inal set of styles that will be rendered.

It is important to note that it is properties that are cascaded to
elements, not rulesets. The �inal state of an element may include
properties that were declared in many different rulesets.

To calculate the cascade, the following formula is applied:5

1.
The declarations with the highest precedence are selected.

2.
The remaining declarations with the highest speci�icity are selected.

3.
When all other factors are equal, the declaration that appears last
will be the one that is applied.

Value Processing
All of the different sources of property values are used together to
determine the �inal value using the following calculation:6

1.
First, all the declared values applied to an element are collected,
for each property on each element. There may be 0 or many
declared values applied to the element.

2.
Cascading yields the cascaded value. There is at most one
cascaded value per property per element.

3.

Defaulting yields the speci�ied value . Every element has exactly
one speci�ied value per property.

4.

Resolving value dependencies yields the computed value. Every
element has exactly one computed value per property.

5.

Formatting the document yields the used value. An element only
has a used value for a given property if that property applies to the
element.

6.
Finally, the used value is transformed to the actual value based on
constraints of the display environment. As with the used value,
there may or may not be an actual value for a given property on an
element.

This calculation from the W3C Speci�ication references a variety of
value classi�ications, which are de�ined as

Declared – These are all the values (0–many) that match the
element and property under review.
Cascaded – This is the value (0–1) that is selected after processing
the cascade.
Speci�ied – This is the value of the cascade, if available, or the default
value for the property and element. There will always be exactly one
(1) speci�ied value for each property and element.
Computed – The absolute value of the speci�ied value which can then
be inherited by child elements.
Used – This is the �inal value that the user agent uses for the layout
of the document.
Actual – This is the value that is actually shown on a device, which
may be adjusted from the used value due to device or environmental

1

2

3

4

5

limitations.

The �inal actual values used for each property on each element are
determined by a wide variety of factors external to your project code,
including device, user agent or browser, user agent style sheet, and
user-provided style sheet.

Summary
In this chapter you have learned the details of how CSS takes rulesets
from many different sources and builds a cohesive set of applied styles
for the web page. In particular, you’ve learned

How HTML inline styles and !important annotations affect
cascading
How to calculate the speci�icity for any given selector
The way properties are inherited within the DOM tree

In the following chapter, you will learn about the different options
CSS provides for building �luid and responsive layouts that can adapt to
variations in device and content.

Footnotes
www.w3.org/TR/CSS22/propidx.html

www.w3.org/TR/2018/REC-selectors-3-20181106/

www.w3.org/TR/2018/REC-selectors-3-20181106/#specificity

Introducing the CSS Cascade: Cascading Order. MDN web docs. Retrieved December 5, 2019,

from https://developer.mozilla.org/en-US/docs/Web/CSS/Cascade

CSS Cascading and Inheritance Level 3: Cascading. W3C. Retrieved December 5, 2019, from

www.w3.org/TR/css-cascade-3/#cascading

http://www.w3.org/TR/CSS22/propidx.html
http://www.w3.org/TR/2018/REC-selectors-3-20181106/
http://www.w3.org/TR/2018/REC-selectors-3-20181106/%2523specificity
https://developer.mozilla.org/en-US/docs/Web/CSS/Cascade
http://www.w3.org/TR/css-cascade-3/%2523cascading

6

CSS Cascading and Inheritance Level 3: Value Processing. W3C. Retrieved December 5, 2019,

from www.w3.org/TR/css-cascade-3/

http://www.w3.org/TR/css-cascade-3/

(1)

© Martine Dowden and Michael Dowden 2020
M. Dowden, M. Dowden, Architecting CSS
https://doi.org/10.1007/978-1-4842-5750-0_4

4. Layouts

Martine Dowden1 and Michael Dowden1

Brownsburg, IN, USA

Individual elements form a layout when they are put together on a
page. Using CSS we rely on the box model to control the width and
behavior of each element without the layout. To control how elements
place themselves in relationship to each other, we can use properties
such as display and �loat. In this chapter we de�ine the box model and
look at �loat, �lex, inline-block, and grid for speci�ic layouts.

Box Model
The base for laying out content is rooted in the box model which
describes the rectangular boxes that are generated for elements in the
document tree. As shown in Figure 4-1, the content is enveloped by
three boxes: padding, border, and margin.

https://doi.org/10.1007/978-1-4842-5750-0_4

Figure 4-1 Box Model

Each of these properties, including the content, will be governed by
dimension, type, positioning, relationship to other elements, and
external information.

Box Sizing
Box-sizing , or the property that de�ines the height and width of an
element, by default has a value of content-box which means that when a
width and height is de�ined for an element, it is only applied to the
content. Adding padding or margin to the element therefore increases
the percentage width of the total available viewport that the element
utilizes.

Content-Box
If a two-column layout, with each div equaling 50% of the width of the
viewport, is desired, the amount of padding applied to each column
needs to be subtracted from the width given to the element or the total
width of both elements will exceed 100%.

Consider a viewport of 800px wide containing two divs. If no
padding, margin, or border is added to the divs, and they are each given
a width of 50%, their combined width will equal 100% of the viewport.
If they are �loated, they will sit perfectly side by side and take up 100%
of the screen such as in Figure 4-2.

Figure 4-2 Content-Box – No Padding

If padding is added to the columns, the width of the columns will
increase by the padding amount, causing them to exceed the width of
the viewport. Figure 4-3 shows the columns with added padding.

Figure 4-3 Content-Box – With Padding

If the divs are �loated, the second would therefore be pushed below
the �irst as their combined width is now greater than 100% of the
container such as seen in Figure 4-4.

Figure 4-4 Effects of Padding and Border When Using box-sizing: content-box

In Code
Let’s take the earlier described scenario and put it in code (Listings 4-1
and 4-2; output shown in Figure 4-4).

<body>

 <h1>No Padding</h1>

 <div class="container">

 <div>

 <p>Content</p>

 </div>

 <div>

 <p>Content</p>

 </div>

 </div>

 <h1>With Padding</h1>

 <div class="container has-padding">

 <div>

 <p>Content</p>

 </div>

 <div>

 <p>Content</p>

 </div>

 </div>

</body>

Listing 4-1 HTML

.container { overflow:auto; }

.container > div {

 width: 50%;

 float: left;

}

.container p {

 background: rgba(0, 0, 0, .16); /* light grey */

 text-align: center;

}

.container > div:last-of-type p { /* second

rectangle */

 background: rgba(0, 0, 0, .32); /* dark grey */

}

.has-padding > div {

 outline: dashed 1px rgba(0, 0, 0, .5);

 padding: 10px;

}

Listing 4-2 CSS

Border will behave the same way as padding; therefore, any border
width applied will need to be included in the sum of content and
padding to calculate the full width or height of the elements included in
the layout.

Margin Collapse

Margins behave a little differently than padding. When sibling elements
both have padding, padding from both is applied, and the space
between the two elements is the sum of both sets of padding. Margin,
however, depending on their context, can collapse. Margin collapsing
is when top and bottom margins are combined or collapsed into a
single margin equal to the largest of the margins applied such as in
Figure 4-5 or, if all margins are negative, the size of the most negative
margin. Left and right margins do not collapse.

Figure 4-5 Margin Collapsing

Margins will collapse when

There is nothing separating the margin of the parent and the margin
of its child including padding, border, inline parts, block formatting
context, or clearance property clear (e.g., clear: right, used with
�loats).
Elements are adjacent siblings except if the latter needs to be cleared
past �loats (more about �loats later in this chapter).
Even when one of the margins is equal to 0.1

In Code
When two divs with 10 pixels worth of padding each are set side to
side, they will only have 10 pixels of vertical margin between them (as
seen in Listings 4-3, 4-4, and Figure 4-6).

Figure 4-6 Margin Collapse

<body>

 <div>Content</div>

 <div>Content</div>

</body>

Listing 4-3 HTML

div {

 margin: 10px;

 background: rgba(0, 0, 0, .16); /* light grey */

}

div:last-of-type {

 background: rgba(0, 0, 0, .32); /* dark grey */

}

Listing 4-4 CSS

However, if we take the earlier example, where the columns have
been �loated and replace the padding for margin, notice that the margin
does not collapse. The columns will still stack as their combined total
width is greater than 100% [50 % + (2 x 10px)] x 2 = 105%, but

because the divs are �loated, the margins do not collapse. See Figure 4-
7.

Figure 4-7 Floated Divs – No Margin Collapse

Unlike border, which can be applied to any element regardless of
type, both margin and padding have restrictions as to which elements
they can be applied to. Padding cannot be set on elements whose
display property value is

table-row-group(<tbody>)
table-header-group (<thead>)
table-footer-group (<tfoot>)
table-row (<tr>)
table-column-group
table-column

Margin cannot be set on elements with table display types (e.g.,
<tr>, <td>, etc.) except table, inline-table, and table-caption.2

Pros and Cons
Although the mixins pixels and percentage-based values can lead to
some interesting math, the bene�it of keeping the box-sizing value
as content-box is that when a width or height value is assigned to

the content, it will not be subject to side effects from the padding
added. The content will be exactly the height or width it was assigned
by the developer. Furthermore, because it is the default value, the
element’s sizing will exhibit “normal” expected behavior without
having to know anything about the other properties already set on the
element.

Special Case: Outlines and Box Shadows Outlines and box
shadows, which create boxes around the border, could be thought of
belonging to the box model. This is not the case because outlines and
box shadows do not take up space. They overlay themselves,
similarly to a position absolute as described in Figure 4-8.

Figure 4-8 Outline and Box Shadow

The outline and box shadow not only overlap the content below
but also bleed out of the viewport without the ability to scroll to it.
Because they do not take up space, it does not constitute over�low,
and the scroll bar is therefore not triggered. See Figure 4-9 and
Listings 4-5 and 4-6.

Figure 4-9 Box-Shadow and Outline Do Not Occupy Space in the Layout

<body>

 <h1>Outline</h1>

 <div class="container outline">

 <div>Content</div>

 <div>Content</div>

 </div>

 <h1>Box-Shadow</h1>

 <div class="container box-shadow">

 <div>Content</div>

 <div>Content</div>

 </div>

 <h1>Both</h1>

 <div class="container outline box-shadow">

 <div>Content</div>

 <div>Content</div>

 </div>

</body>

Listing 4-5 HTML

.container div {

 background: rgba(0, 0, 0, .16); /* light grey

*/

 height: 50px;

}

.container div:last-of-type {

 background: rgba(0, 0, 0, .32); /* dark grey

*/

}

.container.outline div:last-of-type {

 outline: dotted 15px rgba(0, 0, 0, .5);

}

.container.box-shadow div:last-of-type {

 box-shadow: 0px 0px 10px 10px rgba(0, 0, 0,

.5)

}

Listing 4-6 CSS

When both outline and box-shadow are set, they will overlap
each other.

Border-Box
As described earlier, box-sizing: content-box has some
disadvantages when mixins absolute units and percentage-based units.
Content-box can also add extra complexity when setting content as a
percentage of total width or height when the content has padding.

This is when border-box comes in. Assigning box-sizing:
border-box changes how an element’s width and height is calculated.
Instead of encompassing just the content, it takes in the content,
padding, and border. When padding or border is added, the width and
height of the content itself is therefore decreased. See Figure 4-10.

Figure 4-10 Border-Box with Padding

So if we take the �irst example of the two �loated columns, we will
see that the two columns retain a width of 50%. The margin still
behaves the same way as with content-box. Listings 4-7 and 4-8 and
Figure 4-11 show the same example as in Figure 4-4 using box-
sizing: border-box instead of the default box-sizing:
content-box.

<body>

 <h1>No Padding or Margin</h1>

 <div class="container">

 <div>

 <p>Content</p>

 </div>

 <div>

 <p>Content</p>

 </div>

 </div>

 <h1>With Padding</h1>

 <div class="container has-padding">

 <div>

 <p>Content</p>

 </div>

 <div>

 <p>Content</p>

 </div>

 </div>

 <h1>With Margin</h1>

 <div class="container has-margin">

 <div>

 <p>Content</p>

 </div>

 <div>

 <p>Content</p>

 </div>

 </div>

</body>

Listing 4-7 HTML

.container { overflow:auto; }

.container > div {

 width: 50%;

 box-sizing: border-box;

 float: left;

}

.container p {

 background: rgba(0, 0, 0, .16); /* light grey */

 text-align: center;

 margin: 0;

}

.container > div:last-of-type p { /* second

rectangle */

 background: rgba(0, 0, 0, .32); /* dark grey */

}

.has-padding > div {

 border: dashed 1px rgba(0, 0, 0, .5);

 padding: 10px;

}

.has-margin > div {

 border: dashed 1px rgba(0, 0, 0, .5);

 margin: 10px;

}

Listing 4-8 CSS

Figure 4-11 Element Using Border-Box

Box-sizing is not inherited. It will need to be applied to all elements
for which it needs to be changed.

Display

Margin and padding allow for manipulating the display of the element;
the display property manipulates how elements are displayed in
relationship to one another by specifying the type of rendering the box
uses for the element.

The display property has been at the cornerstone of layouts on the
Web since the inception of CSS. Table 4-1 shows when each display
value was added to the speci�ication.

Table 4-1 Display Property Values by CSS Version3

Level 1 Level 2

(Revision 1)

Level 3

1996 2011 2018

block
inline
list-item
none

inline-block
table
inline-table
table-row-group
table-header-group
table-footer-group
table-row table-column-group
table-column
table-cell
table-caption
inherit

Contents
�low-root
run-in
inline list-item
�lex *
inline-�lex *
grid *
inline-grid *
ruby**

*Candidate recommendation
**Working draft

Inline
Considered �low content, inline elements are placed inline with the text
when in a �low layout. By default, the following elements are inline:

<a>, <abbr>, <acronym>, <audio> (if it has visible

controls), , <bdi>, <bdo>, <big>,
,

<button>, <canvas>, <cite>, <code>, <command>∗∗,
<data>, <datalist>, , <dfn>, , <embed>,

<i>, <iframe>, , <input>, <ins>, <kbd>,

<keygen>*, <label>, <map>, <mark>, <meter>,

<noscript>, <object>, <output>, <picture>,

<progress>, <q>, <ruby>, <s>, <samp>, <script>,

<select>, <slot>, <small>, , ,

<sub>, <sup>, <svg>, <template>, <textarea>,

<time>, <u>, <tt>, <var>, <video>, <wbr>
4

*Deprecated
**Obsolete
When the content is displayed inline, by default elements go from

left to right and set themselves side to side, width permitting. By
default, elements, regardless of padding, and margin, will align
themselves to the text baseline. If the width does not permit, the
content will wrap below, as demonstrated in Figures 4-12 and 4-13 and
Listings 4-9 and 4-10.

Figure 4-12 Inline Elements

<body>

 I am some text.

 I am a span.

 More text goes here.

 <code>I am code.</code>

 And some more text.

 I am an anchor tag.

</body>

Listing 4-9 HTML

body {

 font-size: 24px;

 padding: 36px;

 margin: 0;

}

a {

 padding: 10px;

 outline: dotted 2px grey;

}

code {

 margin: 10px;

 outline: dotted 2px grey;

 outline-offset: 8px;

}

Listing 4-10 CSS

Figure 4-13 Element Using border-box

Block Elements

Also considered �low content, block elements stack atop one another
unless they are affected by another property such as �loat.

The following elements are block-level elements by default:5

<address>, <article>, <aside>, <blockquote>,

<details>, <dialog>, <dd>, <div>, <dl>, <dt>,

<fieldset>, <figcaption>, <figure>, <footer>,

<form>, <h1>, <h2>, <h3>, <h4>, <h5>, <h6>,

<header>, <hgroup>, <hr>, , <main>, <nav>,

, <p>, <pre>, <section>, <table>,

Figures 4-14 and 4-15 show the default behavior for block-level
elements.

Figure 4-14 Default Block-Level Behavior Diagram

By default, block-level elements will take the full width of the
viewport. If a width is applied, even if there is still enough room inline
of the element, the block element will still place itself below the
previous. See Listings 4-11 and 4-12.

<body>

 <div>Content</div>

 <div>Content</div>

 <div>Content</div>

</body>

Listing 4-11 HTML

html, body {

 font-size: 24px;

 padding: 36px;

 margin: 0;

}

div {

 background: rgba(0, 0, 0, .16);

 height: 50px;

 margin: 20px;

 outline: dotted 1px gray;

 outline-offset: 19px;

 text-align: center;

}

div:first-of-type {

 padding: 20px;

}

div:nth-of-type(2),

div:last-of-type {

 width: 200px;

}

Listing 4-12 CSS

Figure 4-15 Default Block-Level Behavior

If an inline element is placed after a block element, the inline
element will still be placed after the block element as seen in Listings 4-
13, 4-14, and Figure 4-16.

<body>

 <div>Block Content</div>

 Inline Content

</body>

Listing 4-13 HTML

html, body {

 font-size: 24px;

 padding: 36px;

 margin: 0;

}

div {

 background: rgba(0, 0, 0, .16);

 height: 50px;

 width: 200px;

}

Listing 4-14 CSS

Figure 4-16 Block and Inline

Inline-Block
Inline-block utilizes concepts from both block and inline. It will behave
like a block element but �low with the surrounding content as if it were
inline. A common use case for inline-block is horizontal navigation; see
Listings 4-15 and 4-16 and Figure 4-17.

<body>

 <nav>

 Home

 About

 Contact

 </nav>

</body>

Listing 4-15 Inline-Block HTML

html, body {

 font-size: 24px;

 padding: 36px;

 margin: 0;

}

ul {

 margin: 0;

 padding-left: 0;

 background: lightgray;

}

li {

 list-style-type: none;

 display: inline-block;

 margin: 2rem;

}

a {

 padding: 1rem 2rem;

 background: white;

 border-radius: 2rem;

}

Listing 4-16 Inline-Block CSS

Figure 4-17 Inline-Block

The default behaviors of inline, block, and inline-block elements are
not enough to create the layouts often desired. Before such options as
grid and �lex were introduced in 2018 or �loat, introduced until 1996,6
we relied on tables even when the data was not tabular. For a long time,
this was the only option in creating some more complex layouts, as
even if the CSS speci�ication described better methods, browsers did
not necessarily support them. Today, this is no longer the case, and the
use of tables for display purposes is now thoroughly frowned upon as it
prevents assistive technologies from properly conveying the content
being displayed to the users. Some exceptions, such as e-mail templates,
still exist. Similarly to why historically they had been used for display
purposes in web sites, most e-mail clients have little to no support for
CSS layout properties, but the accessibility concerns remain and
therefore tables for layout should be avoided whenever possible. For

general web use, however, using tables for layouts is considered bad
form and inaccessible. We are going to cover three commonly used
patterns for laying out content: �loat, �lexbox, and grid.

Float
Unlike �lex and grid, �loat is not part of the display property, but a
property in and of itself.

A great use case for �loat is when a �igure is included within text,
allowing text to �low around the �igure such as in Figure 4-18.

Figure 4-18 Floated Image

Creating layouts using �loat, however, was much more dif�icult. Let’s
look at an example that uses the following HTML (Listing 4-17).

<body>

 <h1>Flexbox</h1>

 <nav>

 Nav Element

 Nav Element

 Nav Element

 </nav>

 <div class="container">

 <section>

 <div>1</div>

 <div>2</div>

 <div>3</div>

 </section>

 <main>

 <h2>Main Content</h2>

 <p>Lorem ipsum dolor sit amet,

consectetur... </p>

 <p>Varius morbi enim nunc faucibus a. Ut

placerat... </p>

 <p>Eget duis at tellus at urna condimentum

mattis... </p>

 </main>

 <aside>

 <h2>Aside</h2>

 <p>Placerat duis ultricies lacus sed turpis

tincidunt id aliquet... </p>

 </aside>

 </div>

</body>

Listing 4-17 Example HTML

And we are going to try to achieve the layout in Figure 4-19 .

Figure 4-19 Layout Example

Starting with the navigation, we already see a problem in Figure 4-
20 (Listings 4-18 and 4-19).

html, body {

 padding: 36px;

 margin: 0;

}

h1 {

 text-align: center;

}

nav {

 border-top: solid 1px gray;

 border-bottom: solid 1px gray;

}

nav ul { padding: 0; }

nav li {

 list-style-type: none;

 width: 33%;

 float: left;

}

Listing 4-18 Float: CSS

Once the list items are �loated, the border rises up over them, and
our numbers from the left-hand column come set themselves to the left
of it (Figure 4-20).

Figure 4-20 Floated Navigation

In order for the numbers to behave, the �loat must be cleared. We
can use display: flow-root on the list in order to clear the �loat.
This is a fairly new property. Historically a class of “clear�ix” or “group”
(see Listing 4-19) would have been added to the list.

.clearfix::after {

 content: "";

 clear: both;

 display: table;

}

Listing 4-19 Clear�ix

Continuing down the page, we can get close to the target layout
(Figure 4-19) with �loats (see Listing 4-20 and Figure 4-21); however,
the column just doesn’t line up at the bottom of the screen. Centering
the numbers in the left column to look evenly distributed when the
window is resized and the content re�lows doesn’t work either.
Furthermore, since padding is used to center the numbers, if content
was edited for a full sentence instead of a number, the padding would
have to be recalculated or the text would no longer be centered.

html, body {

 padding: 36px;

 margin: 0;

}

h1 {

 text-align: center;

}

nav {

 border-top: solid 1px gray;

 border-bottom: solid 1px gray;

 display: flow-root;

}

nav ul {

 padding: 0;

 margin: 0;

}

nav li {

 box-sizing: border-box;

 list-style-type: none;

 float: left;

 padding: 1rem;

 text-align: center;

 width: 33.33%;

}

section {

 float: left;

 background: rgba(0, 0, 0, .16);

}

section div {

 box-sizing: border-box;

 color: white;

 background: rgba(0, 0, 0, .50);

 height: 100px;

 width: 100px;

 text-align: center;

 padding: 37px;

 margin-top: 5rem;

 margin-bottom: 5rem;

}

main {

 background: rgba(0, 0, 0, .05);

 box-sizing: border-box;

 padding: 30px;

 float: left;

 width: calc(100vw - 244px - 30%)

}

aside {

 box-sizing: border-box;

 background: rgba(0, 0, 0, .16);

 width: 30%;

 padding: 30px;

 float: right;

}

img {

 width: 100%;

 max-width: 250px;

 float: left;

 padding-right: 20px;

}

Listing 4-20 CSS for Figure 4-21

Figure 4-21 Attempt a Layout Using Floats

Getting the text around the image worked really well, as it is what
�loat was designed to do. The rest of the layout had some issues,
however. The padding and combination of a set height and width would
more than likely make longer content expand out of its container in the
far-left bar. Also of concern, 100% is not easily divisible by 3, so
depending on how the browser decides to calculate the width of each
nav element, content could be pushed around in ways it was not
supposed to. Lastly the background on the columns just doesn’t line up.

For all of these reasons, this would be a bug-prone and hard-to-
maintain layout. To achieve this layout, and have the UI be �luid, the use
of tables, the CSS display: table property, and/or JavaScript
would have been required before �lexbox and grid were introduced.

Flexbox

Historically , two types of layouts that were incredibly dif�icult, both
found in the earlier example, included:

Multiple columns where the background color is to align no matter
the content within them
Centering content vertically

Today we have �lexbox. Solving those two problems is where �lex
really shines. Flexbox also allows for dynamically determining the
width of the column based on the amount of content. Using display:
flex is particularly useful when creating a layout that necessitates
control over the spacing of elements across a container.

Let’s try to create our layout again, using �lexbox this time (Listing
4-21).

h1 { text-align: center; }

nav {

 border-top: solid 1px gray;

 border-bottom: solid 1px gray;

}

ul {

 display: flex;

 padding-left: 0;

 justify-content: space-around;

}

.container { display: flex; }

aside {

 background: rgba(0, 0, 0, .16);

 flex-basis: 30%;

 flex-shrink: 0;

 padding: 30px;

}

section {

 background: rgba(0, 0, 0, .5);

 align-items: center;

 display: flex;

 flex-direction: column;

 justify-content: space-evenly;

}

section div {

 color: white;

 background: rgba(0, 0, 0, .50);

 align-items: center;

 display: flex;

 height: 100px;

 justify-content: center;

 width: 100px;

}

main {

 background: rgba(0, 0, 0, .05);

 padding: 30px;

}

li { list-style-type: none; }

img {

 width: 100%;

 max-width: 250px;

 float: left;

 padding-right: 20px;

}

Listing 4-21 Flexbox CSS

Dissecting the preceding layout, we apply �lex to three areas of the
layout, the three content columns, the navigation, and the far-left
column itself. For both the far-left column and in the navigation, �lex is
used in order to distribute the content across their container vertically
and horizontally, respectively.

Flex-Direction

Flexbox is applied on two axes: main and cross. The main axis de�ines
the direction of the layout. The property flex-direction is used on
the container and includes four options: row, row-reverse, column,
and column-reverse, where row is the default. This will determine
the order in which elements will be displayed and the direction of the
layout (see Figure 4-22).

Figure 4-22 Flexbox Main Axis

Flexbox will by default try to �it all of the content onto one line but
can be made to let the content wrap by using the flex-wrap property.
The flex-wrap property can take any of the following values (Figure
4-23):

nowrap – This is the default. All items will be placed on one line
following the main axis and cause over�low if necessary.
wrap – Items will wrap from top to bottom.
wrap-reverse – Items will wrap from bottom to top.

Figure 4-23 Wrap

By adding to row, column, or wrap, we can alter the sequence in
which elements are displayed. If we want to move a speci�ic element in
the sequence individually, we can use order. The property takes an
integer, by default 0. If an element is assigned a 1, and all others are set
to the default 0, it will appear at the end. If assigned a -1, the element
will appear at the beginning. The order is therefore based on the
sequence provided and then weighted based on values assigned to each
element using the order property.

Justify-Content
To determine the position of each element across the main axis, we use
justify-content on the container. Possible values are as follows:

�lex-start – Elements are placed at the beginning of the container.
Flex-start is the default value.

�lex-end –Elements are placed at the end of the container.

center – Elements are placed at the center of the container.

space-between – Elements are spaced evenly across the container
with no space between the edges of the container and the �irst and last
items.

space-around – Elements are spaced evenly across the container
with half as much space between the edge of the container and the �irst
and last items as between the other items.

space-evenly – Elements are spaced evenly across the container
with the same amount of space between the edges and the �irst and last
elements and between the elements.

Inline-Block Flex-start, middle, and �lex-end have some
advantages over inline-block. For many use cases, the use of
display: inline-block in conjunction with text-align can
achieve the same result; however, inline-block has some intricacies
regarding spacing. Even when margins are set to 0, a small gap will
appear between elements. A layout where the sum of the elements
equals 100% of the width of the container therefore becomes
challenging to create. Let’s look at the code and its output (Listings
4-22 and 4-23 and Figure 4-24).

Example 1

<body>

 <h1>Example 1</h1>

 <nav>

 inline-block element

 inline-block element

 inline-block element

 </nav>

</body>

Listing 4-22 Inline-Block HTML

html, body {

 padding: 12px 36px;

 margin: 0;

 font-size: 32px;

}

ul {

 padding-left: 0;

}

li {

 display: inline-block;

 padding: 10px 20px;

 background: grey;

 color: white;

}

Listing 4-23 Inline-Block CSS

Figure 4-24 Inline-Block Gap

Notice the gap between the inline-block elements. There is no
margin on the list element. Flexed items do not suffer from this
unintended behavior.

Align-Items and Align-Self
The cross-axis is perpendicular to the main axis. Looking back at our
original �lexbox example (Figure 4-24), we have three columns of
content, the left number section, the middle content section, and the
right aside. For each of them to have the same length, denoted by their
respective background colors aligning at the bottom, we can use the
align-content property. The values are as follows:

stretch – Elements will expand to the available height of the
container (width if �lex-direction is column).

For the purposes of columns, this behavior allows �lexed elements
to grow in size, similarly to a table row, so that all the elements
included will have the same height as the latest in the array.

�lex-start or start – Elements will align to the top of the container,
similarly to vertical-align: top.

�lex-end or end – Elements will align to the bottom of the
container, similarly to vertical-align: bottom.

center – Elements will align to the middle of the container, similarly
to vertical-align: middle .

baseline – Elements will align to the text baseline, similarly to
vertical-align: baseline.

The preceding properties are set on the container and will apply to
all elements within. To manipulate a single element and make it behave
differently from the others, we can use align-self. Its values are the
same as those available for align-items, listed earlier.

Flex-Basis, Flex-Grow, and Flex-Shrink

Flex-basis allows for setting a base width elements should start at.
Their content will determine whether they need to grow or shrink to �it
the space available in the container.

To ensure that content �ills 100% of the available space in the
container, a �lex-grow property can be applied. By default set to 0, it
speci�ies the growth factor of the �lexed item. This value is ratio based.
If all siblings of the container have the same value, then they will all
grow by the same amount so that the sum of the elements equals 100%
of the available width (or height if �lex-direction is set to column).
Otherwise it will be distributed according to the ratio de�ined on each
�lexed element.

Flex-shrink works similarly to �lex-grow but for shrinking content
to prevent over�low. By default set to 1, it can be set to 0 and used in
conjunction with �lex-basis to ensure a �lexed element has a �ixed width
(or height if �lex-direction is set to column).

Because of its ability to dynamically deal with the space provided,
display-�lex makes generating �luid designs and aligning content easier
than ever before, without resorting to the use of tables for display
purposes but it is very one directional. Grid, however, brings in the
second dimension.

Grid
Also fairly recently introduced is grid. Where grid shines is that it gives
the developer the ability to name sections making the code easy to read
and maintain. Unlike �lexbox which only deals with one direction at a
time, grid allows for rows and columns to be de�ined. These sections
can be names such as in Listing 4-24, or based on the row and column
number such as in Listing 4-26 .

.container {

 display: grid;

 grid-template-columns: 1fr 1fr 1fr 300px;

 grid-template-rows: 46px auto 36px;

 grid-template-areas:

 "header header header header"

 "main main . sidebar"

 "footer footer footer sidebar";

}

Listing 4-24 Grid CSS

Grid-template-columns de�ines four columns. The �irst three
of equal width and the last of 300px. The “fr” unit used here represents
a fraction of leftover space as a ratio.7 The last column will be given a
width of 300 pixels; the other three will receive equal amounts of
leftover space as their width.

Grid-template-rows de�ines three rows, the �irst with height
and last with height of 46 and 36 pixels, respectively. The middle row,
set to auto, will adjust its height to accommodate its content.

Grid-template-areas de�ines, on the 4 by 3 grid just created,
named areas by row as seen in Figure 4-25.

Figure 4-25 Grid Template Areas

So looking at a full implementation, the code will look and output
looks as follows (Listings 4-25 and 4-26). Figure 4-26 displays the
output.

<body>

 <div class="container">

 <header>

 <h2>Header</h2>

 </header>

 <main>

 <h2>Main</h2>

 <p>Lorem ipsum dolor sit amet, consectetur…

</p>

 <p>Quisque faucibus, augue sed varius

ornare… </p>

 </main>

 <aside class="sidebar">

 <h2>Sidebar</h2>

 Lorem

 Ipsum

 Dolor

 Sit

 Amet

 </aside>

 <footer>

 <h2>Footer</h2>

 </footer>

 </div>

</body>

Listing 4-25 Grid HTML

html, body {

 padding: 36px;

 margin: 0;

}

header {

 grid-area: header;

 background: rgba(0, 0, 0, .1);

 text-align: center;

 padding: 5px;

}

main {

 grid-area: main;

 background: rgba(0, 0, 0, .2);

 padding: 10px;

}

.sidebar {

 grid-area: sidebar;

 padding: 10px;

 background: rgba(0, 0, 0, .3);

}

footer {

 grid-area: footer;

 background: rgba(0, 0, 0, .5);

 text-align: center;

 color: white;

}

.container {

 display: grid;

 grid-template-columns: 1fr 1fr 1fr 1fr;

 grid-template-rows: 46px auto 36px;

 grid-template-areas:

 "header header header header"

 "main main . sidebar"

 "footer footer footer sidebar";

}

header, footer {

 display: flex;

 align-items: center;

 justify-content: center;

}

header h2, footer h2 {

 margin: 0;

}

Listing 4-26 Grid CSS

Note the “ . ” on the second row of the grid-template-areas for
the container class; this allows for the three-column/second row grid
section to remain empty.

Figure 4-26 Grid Output

Each UI element is set to its named grid-area. The advantage is
the naming can follow the purpose of the container being positioned,
making the code easy to read and then maintain. Furthermore, when
repositioning elements for responsiveness, the only property that
needs to be updated is the grid-template-areas .

Grid also allows for de�ining areas using column and row numbers.
Numbering starts at 1 on the far left for columns and 1 on the very top
for rows as depicted in Figure 4-27.

Figure 4-27 Grid Rows and Columns

Using the same HTML and as earlier, we can achieve the same
output by assigning grid-row and grid-column values to each
section (Listing 4-27).

html, body {

 padding: 36px;

 margin: 0;

}

header {

 grid-area: header;

 background: rgba(0, 0, 0, .1);

 text-align: center;

 padding: 5px;

 grid-row: 1;

 grid-column: 1 / 5;

}

main {

 grid-area: main;

 background: rgba(0, 0, 0, .2);

 padding: 10px;

 grid-row: 2;

 grid-column: 1;

}

.sidebar {

 grid-area: sidebar;

 padding: 10px;

 background: rgba(0, 0, 0, .3);

 grid-row: 2 / 4;

 grid-column: 4;

}

footer {

 grid-area: footer;

 background: rgba(0, 0, 0, .5);

 text-align: center;

 color: white;

 grid-row: 3;

 grid-column: 1 / 4;

}

.container {

 display: grid;

 grid-template-columns: 1fr 1fr 1fr 1fr;

 grid-template-rows: 46px auto 36px;

}

header, footer {

 display: flex;

 align-items: center;

 justify-content: center;

}

header h2, footer h2 {

 margin: 0;

}

Listing 4-27 Grid CSS

Grid-row and grid-column can be de�ined using a single
integer (grid-row: 1) or two integers separated by a / (grid-
row: 1/3). When only one integer is used, the section will start that
the line speci�ied and span one column or row such as for the main
element in the example earlier. When two integers separated by a / are
used, the section will start at the line speci�ied by the �irst integer and
end at the line speci�ied by the second, as seen on the footer’s grid-
column value.

Similarly to �lexbox or table, the placement of content within a
section can be adjusted. The justify-items property can be used on the
grid container to determine how content within sections or cells will
align left to right. Its values are start, end, center, and stretch as
illustrated in Figure 4-28. Stretch is the default value.

Figure 4-28 Justify-Items Values

The same values can be used to change the alignment of a speci�ic
cell using the justify-self property on the speci�ic section.

To specify how content aligns vertically in a cell, we can assign the
align-items property to the grid container. Its values are the same as
earlier and it also defaults to stretch (Figure 4-29).

Figure 4-29 Vertical Alignment Using Align-Items

Similarly to justify-self, the same values can be used with the
align-self property on an individual section to allow for a cell to
behave differently than the default set on the container.

Just like �lexbox, grid also has a justify-content and an align-items
property. They have the same values and work in the same fashion as
for �lexbox. They position grid cells horizontally and vertically within
the container. This can be very useful when the grid itself is smaller
than the grid container.

To add space between the cells, grid-gap can be used. This will
determine how much space is between each row and/or column.
Individually, they can be set using grid-row-gap and grid-column-gap,
respectively. For example, grid-gap: 5px 2rem would set a gap of
5 pixels between each row and a gap of 2 rems between each column.

Lastly, grid has an auto-placement algorithm. This will kick in when
there are more items to place than what is de�ined by the CSS, or when
an element has a grid-column or a grid-row value that is outside of the
bounds de�ined in the container’s templates. The behavior of the auto-
placement is controlled using the grid-auto-�low property. Auto-�low
can be optimized for �illing

By row with row value – Fills in rows and adds new rows as
necessary
By column, using the column value – Fills in columns and adds
new columns as necessary

To have the grid �ill in any gaps that may exist, dense may be added
to both the row and column values, grid-auto-flow: column
dense.

Grid is now much more widely supported across evergreen
browsers but has some compatibility issues in older browsers such as
Internet Explorer 11 which currently has an incomplete
implementation of the speci�ication.

 Accessibility When Using Flexbox or Grid

Grid and �lexbox give the ability to reposition and reorder
content at will simply by changing just one or two properties
regardless of the sequence in the HTML. This can become
problematic for accessibility.

The Web Content Accessibility Guidelines states

When the sequence in which content is presented affects its
meaning, a correct reading sequence can be programmatically
determined. (Level A) Criterion 1.3.2 Meaningful Sequence (Level
A)8

When changing the order of elements using CSS, it is important
to make sure the programmatic sequence still makes sense.

Responsive Design
At the core of responsive design implementation is the media query.

Media Query “Media Queries allow authors to test and query
values or features of the user agent or display device, independent of
the document being rendered. They are used in the CSS @media
rule to conditionally apply styles to a document, and in various other
contexts and languages, such as HTML and JavaScript.”

—Media Queries Level 49

More speci�ically, using media queries allows you to conditionally
change styles based on the viewport’s properties. Often used in
responsive design are media queries related to the viewport’s width,
the end goal being to tailor the layout for small mobile screens vs. large
desktop monitors, and everything in between. To achieve this
technique, breakpoints are chosen at different viewport width(s) where
the styles will change. The CSS might look as in Listing 4-28.

@media (min-width: 500px) { ... }

Listing 4-28 Media Query

where anything in between the brackets does not get applied unless
the width of the viewport is greater than 500px. Width ranges can also
be declared this way (Listing 4-29).

@media (500px <= width <= 700px) { ... }

Listing 4-29 Ranged Media Query

where the styles are applied when the viewport widths are between
500 and 700 pixels.

It is easy to fall into the trap of thinking that the styles need to be
rewritten for each of the breakpoints. Furthermore, when going from

narrow to wide layouts, far fewer styles need to be overridden than
going from wide to narrow. This is because on narrower layouts, items
are more likely to be simply stacked than with wide layouts. For most
use cases, the easiest way to set up responsiveness to decrease the
amount of code being written is to start with the narrow layout and
then add on as the screen gets wider. Let’s look at the implementation
of this sample design (Figure 4-30).

Figure 4-30 Responsive Design

To achieve this layout, the HTML in Listing 4-30 will be used.

<body>

 <header>

 <h1>Responsive Design</h1>

 </header>

 <nav>

 Link 1

 Link 2

 Link 3

 </nav>

 <h2>My Items</h2>

 <main>

 <article>

 <h3>Article Title</h3>

 <p>Lorem ipsum dolor sit amet, consectetur

elit...</p>

 Read More

 </article>

 ...

 </main>

</body>

Listing 4-30 Responsive Layout HTML

The �irst thing we do is establish some base styles that will be
applied regardless of screen size (Listing 4-31).

html, body {

 margin: 0;

 padding: 0;

}

body {

 box-sizing: border-box;

 font-family: 'Gill Sans', 'Gill Sans MT', ...

sans-serif;

 height: 100vh;

 left: 0;

 margin: 0;

 position: absolute;

 top: 0;

 width: 100vw;

}

h1, h2, h3 {

 font-family: Impact, Haettenschweiler, ... sans-

serif;

 margin: 0;

}

header {

 background: rgba(0, 0, 0, .1);

 box-sizing: border-box;

 grid-area: header;

 text-align: center;

 padding: .75rem;

}

nav {

 background: #c6c6c6;

 grid-area: nav;

}

nav ul {

 margin: 0;

 padding: 0;

 display: flex;

 justify-content: space-evenly;

}

nav li { list-style-type: none; }

nav a {

 display: block;

 padding: 1rem;

}

h2 {

 background: #c6c6c6;

 grid-area: title;

 padding: .5rem 1rem;

}

main {

 padding: 1rem;

 grid-area: main;

 overflow: auto;

}

article {

 background: #e9e9e9;

 border-left: solid 2.5rem gray;

 padding: 1rem;

 margin-bottom: 1rem;

}

article a {

 display: block;

 text-align: right;

}

Listing 4-31 Base Styles

We can then add the layout-speci�ic information for each breakpoint
(Listings 4-32 and 4-33).

/* Mobile layout */

body {

 display: grid;

 grid-template-columns: 1fr;

 grid-template-rows: 4rem auto auto 3rem;

 grid-template-areas:

 "header"

 "title"

 "main"

 "nav";

 height: 100vh;

 overflow: hidden;

}

Listing 4-32 Mobile CSS

/* Desktop layout */

@media (min-width: 500px) {

 body {

 grid-template-columns: 1fr;

 grid-template-rows: auto auto auto;

 grid-template-areas:

 "header"

 "nav"

 "title"

 "main";

 height: auto;

 overflow: auto;

 }

 main { column-width: 250px ; }

 article { break-inside: avoid; }

 h2 { background: none; }

}

Listing 4-33 Desktop CSS

Notice that in Listing 4-33, it takes very little CSS to readjust the
layout for desktop users. This is because base styles are already applied
and do not have to be duplicated. We also see here the advantages of
named areas for grid layout and the ease of organizing them for the
correct layout.

Summary
Elements are subject to the box model, which dictates how its width,
padding, margin, and border will behave. When put together, the
elements form a layout. There are as many ways to approach a layout as
there are layouts to be created, but each technique has its own
strengths and weaknesses. We have looked at �loat, �lexbox, and grid as
well as media queries for responsive layouts.

In the next chapter, we will look at scenarios where CSS doesn’t
seem to work as expected, with a special focus on differences between
browsers.

Footnotes

1

2

3

4

5

6

7

8

9

Mastering Margin Collapsing. (August 4, 2019). Retrieved from
https://developer.mozilla.org/en-

US/docs/Web/CSS/CSS_Box_Model/Mastering_margin_collapsing

8 Box Model. (August 4, 2019). Retrieved from www.w3.org/TR/CSS22/box.html

Display. (August 4, 2019). Retrieved from https://developer.mozilla.org/en-

US/docs/Web/CSS/display

Inline elements. (August 4, 2019). Retrieved from https:// developer. mozilla. org/ en-US/

docs/ Web/ HTML/ Inline_ elements

Block-level elements. (August 4, 2019). Retrieved from

https://developer.mozilla.org/en-US/docs/Web/HTML/Block-

level_elements

Cascading Style Sheets, level 1. (December 17, 1996). Retrieved from

www.w3.org/TR/CSS1/#float

CSS Grid Layout MOdule Level 1: 7.2.3. Flexible Lengths: the “fr” unit. (August 5, 2019).

Retrieved from www.w3.org/TR/css3-grid-layout/#fr-unit

Web Content Accessibility Guidelines (WCAG) 2.0, Meaningful Sequence. (August 7, 2019).

Retrieved from www.w3.org/TR/2008/REC-WCAG20-20081211/#content-
structure-separation-sequence

Media Queries Level 4. (August 9, 2019). Retrieved from

www.w3.org/TR/mediaqueries-4/

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Box_Model/Mastering_margin_collapsing
http://www.w3.org/TR/CSS22/box.html
https://developer.mozilla.org/en-US/docs/Web/CSS/display
https://developer.mozilla.org/en-US/docs/Web/HTML/Inline_elements
https://developer.mozilla.org/en-US/docs/Web/HTML/Block-level_elements
http://www.w3.org/TR/CSS1/%2523float
http://www.w3.org/TR/css3-grid-layout/%2523fr-unit
http://www.w3.org/TR/2008/REC-WCAG20-20081211/%2523content-structure-separation-sequence
http://www.w3.org/TR/mediaqueries-4/

(1)

© Martine Dowden and Michael Dowden 2020
M. Dowden, M. Dowden, Architecting CSS
https://doi.org/10.1007/978-1-4842-5750-0_5

5. Compatibility and Defaults

Martine Dowden1 and Michael Dowden1

Brownsburg, IN, USA

When writing CSS, it doesn’t take very long for most developers to realize
that the same code, when run in different browsers or even on the same
browser but on a different device, just doesn’t behave in the same way.
This chapter covers browser differences and techniques to handle cross-
browser compatibility.

Browser Support
When testing a layout, it is important to test the application in multiple
browsers, because they do not all use the same layout and JavaScript
engines, which lead to variation in how they interpret code. Table 5-1
lists some common browsers and their engines.

Table 5-1 Browser Technologies

Browser Layout Engine JavaScript
Engine

Chrome Blink, WebKit V8

Firefox Gecko, Quantum SpiderMonkey

Internet
Explorer

Trident Chakra,
JScript

Microsoft
Edge

EdgeHTML, WebKit (on IOS), Blink (on Android) – switching to a
Chromium platform1

Chakra

Opera Blink (Chromium) Chrome V8

Safari WebKit Nitro

https://doi.org/10.1007/978-1-4842-5750-0_5

The layout engine is responsible for how the page should look. It
determines, based on the CSS, how the view should be laid out, painted,
and animated. See Chapter 1 for rendering details. Furthermore, many
are available as open source and are maintained by different groups and
agencies, allowing for differences in the implementation and status of
any given speci�ication.

For example, the scroll-snap-type CSS property, part of the Scroll
Type Module whose �irst public draft was published in March of 2015
and now is a candidate for recommendation, has2 vastly different
support and implementation across browsers. This leads to behavior
differences. See Table 5-2 for browser-speci�ic support details.

Table 5-2 Browser Support for Scroll Snap by Browser Version3

Looking over time, it is clear that using this property would yield
different results across browsers. Furthermore, browsers include CSS
defaults, and these also have slight differences.

Browser Defaults
When writing HTML where no CSS is applied, certain tags have default
styles such as the header tags (see Figure 5-1).

Figure 5-1 Default Styles

Browsers, however, don’t use the same style sheets and therefore
don’t have the same default. Although mostly similar, there are some
subtle differences. Textarea, for example, will behave differently in Safari
vs. Firefox (see Figures 5-2 and 5-3).

Figure 5-2 Firefox

Figure 5-3 Safari

Notice the default typeface in the textarea; in Firefox it is a
monospaced font vs. a sans-serif in Safari. The alignment also differs
slightly. On Firefox, the textarea is aligned to the baseline of the text,
while in Safari it hovers slightly above the baseline. These subtle
differences can be infuriating when trying to get a design to look and
behave the same across browsers and versions.

A robust technique for counteracting this is to manually set defaults
so that all browsers are running off the same base styles. Although this
does not address compatibility differences, it will address subtle
unintended behavior differences such as the one outlined earlier.

CSS Reset
CSS reset is a �ile that takes all the defaults sets on elements by the
browsers and “resets” them. The goal is to take element styles and bring
them all to the same consistent baseline in order to reduce or eliminate
inconsistencies that exist between browsers. There are many options out
there, but a commonly used one is by Eric Meyer (see Table 5-3), one of
the pioneers of CSS reset. Whichever one you use, there isn’t a one size
�its all, and it probably will need to be customized to your particular
project.

Table 5-3 CSS Reset

Reference Link

Project Site https://meyerweb.com/eric/tools/css/reset/index.html

Style sheet https://meyerweb.com/eric/tools/css/reset/reset.css

Normalize
Normalize is a project published by Nicolas Gallagher and Jonathan Neal
in August of 2016. It focuses on �ixing known differences between
browsers. This approach is radically different to a CSS reset which aims
to prevent differences by �lattening the default styles. Normalize retains
the defaults. By adding normalize as the �irst CSS to be loaded in a
project, either by making it the �irst style sheet to be imported or by
including it in the project’s CSS as the �irst CSS to be applied, the
variations are already dealt with and focus can shift to achieving the
layout rather than �ighting with subtle differences between browsers (for
where to �ind normalize, see Table 5-4). Worth pointing out is that many

https://meyerweb.com/eric/tools/css/reset/index.html
https://meyerweb.com/eric/tools/css/reset/reset.css

CSS frameworks and libraries, such as Bootstrap, already include some
form of normalization. It is worth double-checking that any UI library or
framework being used doesn’t already account for differences to prevent
unnecessary bloat.

Table 5-4 Normalize

Reference Link

Project
Site

http://necolas.github.io/normalize.css/

GitHub
Repository

https://github.com/necolas/normalize.css

NPM www.npmjs.com/package/normalize.css

CDN https://yarnpkg.com/en/package/normalize.css

Style sheet https://necolas.github.io/normalize.css/latest/normalize.css

Although normalizing base styles addresses differences in CSS
defaults, it does not address differences in implementation or support.

Note Normalize and reset are not being endorsed in any way, and
the quality and relevance of any package can be subject to rapid
change. Please research any dependencies you intend to use.

Browser Compatibility
Cross-browser compatibility, making sure the UI looks the same across
multiple browsers, ranks right up there among the hardest things to do
in CSS. There are multiple ways to tackle this problem and they are often
used in combination with one another.

Vendor Pre�ixes
When functionality for a browser is still experimental or is nonstandard,
browsers used to make them available using vendor-speci�ic pre�ixes.
Although this may help in reaching similarity across user agents, using
CSS that relies on vendor pre�ixes in production is not a good idea as the
implementation is experimental and may not follow the speci�ication.
Because historically developers have been using these pre�ixes in

http://necolas.github.io/normalize.css/
https://github.com/necolas/normalize.css
http://www.npmjs.com/package/normalize.css
https://yarnpkg.com/en/package/normalize.css
https://necolas.github.io/normalize.css/latest/normalize.css

production, browsers are increasingly moving to placing nonstandard
and experimental features behind feature �lags to end this practice;
however, many are still actively in use (see Table 5-5).4

Table 5-5 Vendor Pre�ixes

Pre�ix Browsers

-webkit- WebKit-based browsers (Chrome, Safari, etc.)

-moz- Firefox

-o- Pre-WebKit versions of Opera

-ms- Internet Explorer and Microsoft Edge

Internet Explorer 11 (IE), for example, has a nonstandard
implementation of grid. Its implementation is based on the April 7, 2011,
working draft rather than the candidate recommendation.5 Therefore,
vendor pre�ixes must be used in order for grid to work in IE. However,
even with the use of pre�ixes, behavior still differs. In IE, explicitly
positioning each element in the grid is necessary but not in other
browsers where they will set themselves in the next available space.
Furthermore, some aspects of the current speci�ication, such as grid-
gap, are simply missing. Listings 5-2 and 5-3 show the code to achieve
the same layout in IE and Firefox when using grid. Both will use the same
HTML (Listing 5-1). Their respective outputs are shown in Figures 5-4
and 5-6, while Figure 5-5 shows IE without vendor pre�ixes.

<body>

 <div class="grid-container">

 <aside>My Aside</aside>

 <section>Section 1</section>

 <section>Section 2</section>

 <section>Section 3</section>

 <section>Section 4</section>

 </div>

</body>

Listing 5-1 Grid HTML

html, body {

 padding: 36px;

 margin: 0;

}

.grid-container {

 display: grid;

 grid-template-columns: 1fr 1fr 1fr;

 grid-template-rows: 5rem 5rem;

 grid-gap: 1rem;

}

aside {

 grid-row: 1/3;

 background: lightgray;

}

section {

 border: solid 1px gray;

}

Listing 5-2 Grid Without Vendor Pre�ixes

Figure 5-4 Grid in Firefox

When the same code found in Listing 5-2 is run in IE, no grid is
rendered and the elements are simply stacked on top of each other
(Figure 5-5).

Figure 5-5 Grid Without Vendor Pre�ixes in IE

This is because grid, a value of display, does not exist. To access grid
functionality in Internet Explorer, vendor pre�ixes need to be used.

html, body {

 padding: 36px;

 margin: 0;

}

.grid-container {

 margin: -.5rem;

 display: -ms-grid;

 -ms-grid-columns: 1fr 1fr 1fr;

 -ms-grid-rows: 5rem 5rem;

}

aside {

 background: lightgray;

 -ms-grid-row-span: 2;

 margin: .5rem;

}

section {

 border: solid 1px gray;

 margin: .5rem;

}

section:nth-of-type(1) {

 -ms-grid-column: 2;

 -ms-grid-row: 1;

}

section:nth-of-type(2) {

 -ms-grid-column: 3;

 -ms-grid-row: 1;

}

section:nth-of-type(3) {

 -ms-grid-column: 2;

 -ms-grid-row: 2;

}

section:nth-of-type(4) {

 -ms-grid-column: 3;

 -ms-grid-row: 2;

}

Listing 5-3 Grid with Internet Explorer Vendor Pre�ixes

With -ms vendor pre�ix and substituting grid-gap for margins, the
same layout can be achieved (Figure 5-6).

Figure 5-6 Grid with Vendor Pre�ixes in IE

Fallbacks
A better solution to vendor pre�ixes when a browser does not support a
property is to create a fallback . When a browser encounters a property
or value it does not support, it will ignore it, and therefore, the previously

set value will be maintained. If the element does not have a previously
set value or does not inherit a value, the default will be used.

For example, (at the time of this writing) cross-fade has an
experimental version, behind a vendor pre�ix (-webkit) in Safari and is
unsupported in Firefox. To start using it, a fallback can be created.
Listings 5-4 and 5-5 show the use of cross-fade and its fallback (Figure 5-
8 shows the desired output).

<body>

 <div class="container"></div>

</body>

Listing 5-4 Cross-Fade Fallback HTML

html, body {

 box-sizing: border-box;

 padding: 36px;

 margin: 0;

}

.container {

 background-image: url(child.png);

 background-repeat: no-repeat;

 background-size: contain;

 background-position: bottom;

 background-image: -webkit-cross-

fade(url(beach.png), url(child.png), 50%);

 background-image: cross-fade(url(beach.png) 50%,

url(child.png) 50%);

 box-sizing: border-box;

 padding: 1rem;

 height: 30rem;

 max-width: 100%;

 width: 100%;

}

Listing 5-5 Cross-Fade Fallback CSS

First, a background image is set, then it is overridden by the cross-
fade using the vendor pre�ix, and �inally, it is overridden again by the

standard cross-fade. Browsers that don’t support cross-fade or the
vendor pre�ix version, such as Firefox (Figure 5-7), will display just the
background image.

Figure 5-7 Fallback to Background Image

Browsers which do support a vendor pre�ix, such as Safari (Figure 5-
8), will display the experimental versions.

Figure 5-8 Cross-Fade

Finally, browsers that support the �inal version will display the
speci�ication-de�ined cross-fade.

Supports At-Rule
The @supports at-rule allows for checking if a particular property and
value pair is supported or not, allowing the user experience to be
customized accordingly. This feature is generally well supported apart
from IE. The expression @supports(property:value {} returns
true when the property is supported, while @supports not
(property:value){} is true for when it is not. Styles within the
selector are only applied if the selector returns true. These can be
conjoined with either the and or or operators to create new
expressions. Generally it is prefered to use @supports for progressive
enhancement of newer features, while fallbacks can be used to provide
backwards-compatibility with older browsers.

To see @supports in action, let’s look at the backdrop �ilter, which
works in Opera but not in Firefox. Listings 5-6 and 5-7 show the use of
@supports to create conditional styling using support.

<body>

 <div class="container">

 <p>Lorem ipsum dolor sit amet, consectetur

adipiscing</p>

 </div>

</body>

Listing 5-6 Cross-Fade Fallback HTML

html, body {

 padding: 36px;

 margin: 0;

}

.container {

 background-image: url('art.png');

 padding: 1rem;

}

p {

 background-color: rgba(255, 255, 255, 0.6);

 backdrop-filter: blur(20px);

 margin: 5rem;

 padding: 1rem;

}

@supports not (backdrop-filter: blur(20px)) {

 p {

 background-color:white;

 }

}

Listing 5-7 Cross-Fade Fallback CSS

When backdrop-filter is supported, the paragraph background
is blurred and at a 60% opacity (Figure 5-9). When it isn’t, the paragraph
background is set to white with full opacity to increase legibility that
would have been gained from blur (Figure 5-10).

Figure 5-9 backdrop-filter

Figure 5-10 Fallback

Project Defaults
Resetting browser defaults helps with creating consistency across
browsers. Creating application defaults can help create consistency
across the application. This is especially important when working with
component-based architectures. Separating out theme from layout will
also help with consistency. Style can be set on the elements themselves
and base classes to be reused throughout the application. If the theme is
changed, these changes only need to be updated in one place.
Furthermore, when creating new views, the only concern becomes layout
as the theme is already taken care of. Listings 5-8 and 5-9 are a sample
excerpt; Figure 5-11 shows the output.

<body class="view">

 <h1>Theme</h1>

 <div class="container">

 <div class="card">

 <div class="header">Header</div>

 <div class="body">

 <p>Lorem ipsum dolor sit amet, ... </p>

 </div>

 <div class="actions">

 <button>My Button</button>

 <a>My Link

 </div>

 </div>

 <div class="card"> ... </div>

 <div class="card"> ... </div>

 </div>

</body>

Listing 5-8 Default Styles HTML

body {

 --border: solid 1px rgba(0, 0, 0, .2);

 --dark: rgba(0, 0, 0, .87);

 --light: rgba(255, 255, 255, .87);

 --shadow: box-shadow: 5px 5px 5px var(--dark);

 color: rgba(0, 0, 0, .87);

 font-family: sans-serif;

}

h1 { font-family: cursive; }

a {

 font-size: .75rem;

 font-variant: small-caps;

 text-decoration: none;

}

button {

 background: none;

 border: var(--border);

 border-radius: 45px;

 box-shadow: var(--shadow);

 box-sizing: border-box;

 font-size: .75rem;

 font-variant: small-caps;

 padding: .5rem 1rem;

}

.actions {

 align-items: center;

 border-top: var(--border);

 display: flex;

 justify-content: flex-end;

 margin-top: 1rem;

}

.actions > * { margin-left: 1rem;}

.card {

 border: var(--border);

 border-radius: 3px;

 margin-bottom: 1rem;

}

.card > div { padding: 1rem; }

.card .header {

 background: rgba(0, 0, 0, .87);

 color: rgba(255, 255, 255, .87);

}

/* Layout */

.container {

 column-width: 30rem;

}

Listing 5-9 Default Styles CSS

Figure 5-11 Theming

By setting variables, default styles on elements, and creating default
container classes, like the .card class in Listing 5-9, a theme can be
created. Properties one might include in as part of the theme are things
that revolve around look and feel such as color, typography, borders,
padding, and so on. From there, creating views becomes easier because
the primary concern remaining is layout. By setting up default theming,
even in a component-based architecture, the look and feel, or brand, can
be kept consistent. Furthermore, updating the theme can be as simple as
changing the custom property values.

Summary
This chapter covered browser differences and techniques to standardize
CSS across them. Techniques for dealing with differences in CSS support
in different browsers were also discussed. Finally, theming was
addressed. The next chapter will look at supporting user interaction
using transitions and animations.

1

2

3

4

5

Footnotes
Warren, T. (8 April 2019). Retrieved on September 3, 2019, from

www.theverge.com/2019/4/8/18300077/microsoft-edge-chromium-canary-

development-release-download

CSS Scroll Snap Module Level 1 Publication History. Retrieved September 1, 2019, from

www.w3.org/standards/history/css-scroll-snap-1

Can I use scroll-snap? Retrieved September 1, 2019, from

https://caniuse.com/#search=scroll-snap

Vendor Pre�ix. Retrieved September 1, 2019, from

https://developer.mozilla.org/en-US/docs/Glossary/Vendor_Prefix

Can I use grid? Retrieved September 1, 2019, from

https://caniuse.com/#search=grid

http://www.theverge.com/2019/4/8/18300077/microsoft-edge-chromium-canary-development-release-download
http://www.w3.org/standards/history/css-scroll-snap-1
https://caniuse.com/%2523search%253Dscroll-snap
https://developer.mozilla.org/en-US/docs/Glossary/Vendor_Prefix
https://caniuse.com/%2523search%253Dgrid

(1)

© Martine Dowden and Michael Dowden 2020
M. Dowden, M. Dowden, Architecting CSS
https://doi.org/10.1007/978-1-4842-5750-0_6

6. Interactions and Transitions

Martine Dowden1 and Michael Dowden1

Brownsburg, IN, USA

When we think of HTML and CSS, we often think “static.” JavaScript much more
commonly comes to mind when thinking of interactions or animations. CSS,
however, includes several features that allow for manipulation of elements as a
result of user interaction. In this chapter, we will look at how we can respond to
user interaction using CSS and how to support those interactions using animations
and transitions.

User Interaction Response
One of the most commonly used ways of responding to user interaction in CSS is by
using the pseudo elements :hover, :focus, and :active.

The pseudo element :hover matches when an element is interacted with using
a pointing device – most commonly, when the user hovers with the mouse over the
element1 such as a link or button. This can be used to give the user a visual
indication that the element can be interacted with.

The :focus pseudo class is triggered when an element receives focus, such as
when tabbed to using the keyboard or being clicked. Often overlooked, focus is
important as it gives a visual indicator to the user as to which element they are
currently interacting with or about to interact with. Changing border styles on an
input �ield when it is in focus will tell the user which �ield they are about to type in,
which is incredibly helpful in orienting the user as to where in the page they are
currently at. Not all elements can natively receive focus. Outside of some exceptions
such as the video element, buttons, anchor tags, and form items like input and select
are the only elements that can receive focus without adding a tabindex attribute
to the element.

The :active pseudo element triggers when an element is being activated such
as a button being pressed or a link being clicked. A change in button style, such as
removing a shadow when a physical button is being pressed, re�lects real-world
expectations of the action of depressing a physical button. Although a user might

https://doi.org/10.1007/978-1-4842-5750-0_6

not be able to articulate why, small interactions such as this will make the
interaction feel more natural to the user.

 Accessibility and Focus Most browsers will have default behavior around
elements when focus is applied. If squashing the default behavior, some visual
indication of focus needs to be reapplied so that a user can visually distinguish
the element that is in focus from other elements.2 Furthermore, focus should not
change the context, functionality, meaning, or operability.3,4

From the interaction, a response can then be set such as changing the element’s
looks, size, or even position. Adding a transition to a visual change, if the animation
is informative of the change about to take place, will help the user understand the
change being applied. When expanding an accordion for example, animating the
opening of the accordion section will help the user stay oriented to where they are
in the page especially since content below will be moved to a different location,
possibly outside the viewport.

When responding to a CSS-triggered event such as hover, focus, or active, it is
much more maintainable to keep the associated transition in CSS as well rather
than to use JavaScript. This allows both the trigger and the reaction to stay together
and for their association to remain clear and evident. This helps keep visual
instructions within the style sheets.

Transform
When creating transitions and animations, although not a requirement, the CSS
transform property is often used. Transform allows elements styled with CSS to be
transformed in two-dimensional space. Transform functions are based on the
transformation matrix. The matrix() function is a shorthand for matrix3d()
which takes six parameters a, b, c, d, tx, and ty, which are shown in bold in Figure 6-
1.

Figure 6-1 Transform Matrix

Parameters a, b, c, and d describe the linear transformation and tx and ty
describe the translation to be applied. CSS provides transform functions based on

the preceding matrix to manipulate elements such as translate, scale, rotate, skew,
and perspective. Using the translate() function to change the position of an
item, such as sliding something into view, is generally going to be more performant
than manipulating its position. The same can be said about scale() over changing
an element’s height or width such as expanding or collapsing a menu or accordion.
The rotate() function is often used in microanimations; continuing with the
accordion example, it can be used to rotate an arrow or caret in the accordion’s
header to distinguish if the associated panel is open or closed. When the panel is
being opened, the arrow can rotate at the same time to inform the user as to the
state of the panel in question. Although seemingly insigni�icant, small details such
as this one, if informative, can help the user orient and understand what they are
looking at and what is happening. Details regarding the transform functions can be
found in Table 6-1.

Table 6-1 Transform Functions

Function Description Dimension

matrix() Shorthand for matrix3d(). See the earlier description. Takes six
parameters.

2D

matrix3d() Linear transformation and translation over three dimensions. See the
earlier matrix description. Takes 16 values.

3D

translate(tx,

ty)

Translation by the vector, where x is the �irst translation value and y is the
second. To individually manipulate the x- or y-axis, translateX(tx) and
translateY(ty) can be used.

2D

translate3d(tx,

ty, tz)

Same as translate() but on three dimensions. TranslateZ(tz) can be used to
translate the element on the z index. This tz value cannot be a percentage,
it must be a length.

3D

scale(sx, sy) Scaling vector, where x scales the height and y scales the width and initial
value is 1. To scale the height or width independently, scaleX(sx) and
scaleY(sy) can be used.

2D

scale3d() Same as scale() but on three dimensions. ScaleZ(tz) can be used to
translate the element on the z index.

3D

rotate(∠) Rotates the element from the point of transform-origin by the angle
provided.

2D

rotate3d(x, y,

z, a)

Rotates an element around a �ixed axis in three-dimensional space, where
x, y, and z describe the axis of rotation and a describes the angle of
rotation.

3D

skew(∠x, ∠y) Distorts an element by the provided angle on the x- and y-axes. To skew
the element by axis, skewX(∠x) and skewY(∠y) can be used.

2D

perspective(z) Gives perspective to three-dimensional elements where 0 is the default.
When z is increased, the element becomes larger, and when it is
decreased, the element shrinks.

3D

Transitions
When the styles for an element are changed, transitions allow for the shift from
initial state to the new state to be visually smooth. As its name implies, the

transition property controls the visual aspect of how values change from one state
to another over time.

The transition property is the shorthand property for the following: property,
duration, timing function, and delay. Its syntax is described in Listing 6-1 and its
properties are de�ined in Table 6-2.5

transition: property duration timing-function delay;

Listing 6-1 Transition Property Shorthand Syntax

Table 6-2 Transition Property Values

Value Name Behavior Initial
Value

transition

-property

De�ines the property the transition will affect all

transition

-duration

De�ines how long the transition will take to complete 0s

transition

-timing

-function

De�ines the acceleration curb for how the values get applied during the
transition

ease

transition

-delay

De�ines the delay period before the transition starts 0s

Listings 6-2 and 6-3 show an on-hover transition.

<body>

 Transitions

</body>

Listing 6-2 HTML for Transition Example

html, body {

 padding: 36px;

 margin: 0;

}

a {

 align-items: center;

 background: gray;

 border: solid 1px white;

 color: white;

 display: flex;

 font-size: 36px;

 height: 100px;

 justify-content: center;

 text-decoration: none;

 transition: all 250ms ease-in-out;

}

a:hover {

 background: white;

 border-color: gray;

 color: gray;

 border-radius: 45px;

}

Listing 6-3 CSS for Transition Example

In the preceding listing , the link is hovered over causing the background-color,
border-color, font color, and border radius to gradually change over 250
milliseconds (see Figure 6-2).

Figure 6-2 Animation Code Output Over Time

User Experience Transitions can be a great way to help guide the user through
an application by enhancing the relationship between elements when an action
is performed. To achieve this goal, however, the animation should be
informative, focused, and expressive.6 Animations should last between 200
and 500 milliseconds with smaller, less complex animation, or when on a smaller
screen, in the 200–300 millisecond range.7

Keyframe Animations
Unlike transitions, which can only happen once when the user triggers the event,
animations can be repeated over an inde�inite period of time. They can also be
applied when an element is added to the DOM such as an element going from a
display:none to display:block. This might be the case when opening a
menu. The menu items were hidden from the user, and they need to be slid into

view rather than abruptly displayed. By animating the display of the menu element,
the user implicitly understands the origin of the menu item. Animation also
provides more control over the steps of the animation, allowing for much more
complexity than in a transition. By percentage along the animation, the keyframe
rules set when what changes need to occur. Listings 6-4 and 6-5 show an example
using keyframes.

<body>

 <div class="animations">Animations</div>

</body>

Listing 6-4 Keyframes HTML

html {

 padding: 0;

 margin: 0;

}

body {

 box-sizing: border-box;

 padding: 36px;

 margin: 0;

}

body > div {

 box-sizing: border-box;

 margin-bottom: 3rem;

}

@keyframes myAnimation {

 0% {

 background: gray;

 border-color: white;

 color: white;

 border-radius: 0px;

 transform: scale(0);

 }

 25% {

 transform: rotate(5deg) scale(.25);

 }

 50% {

 transform: rotate(-10deg) scale(.5);

 }

 75% {

 transform: rotate(35deg) scale(.75);

 }

 100% {

 background: white;

 border-color: gray;

 color: gray;

 border-radius: 45px;

 transform: rotate(0) scale(1);

 }

}

.animations {

 animation: myAnimation 500ms ease-in-out 1;

 background: white;

 border: solid 1px gray;

 border-radius: 45px;

 box-sizing: border-box;

 color: gray;

 font-size: 2rem;

 padding: 2rem;

 text-align: center;

 width: 100%;

}

Listing 6-5 Keyframes CSS

Figure 6-3 Animation Code Output Over Time

Background-color , border-color, color, border radius, and scale are only de�ined
at 0 and 100% and are therefore interpolated. The element will rotate to the
speci�ied degree at each percent. Even though 100% does not specify a rotation
degree, at the end of the animation, the element will set its rotation to what ever is
set on the element, or 0.

To trigger the keyframe, the animation property is used (see Listing 6-6). The
animation property can take up to seven values: name, duration, timing-function,
delay, iteration-count, direction, and �ill-mode (details in Table 6-3).

animation: name duration timing-function delay iteration-

count direction

 fill-mode;

Listing 6-6 Animation Property

Table 6-3 Animation Property Values

Value Name Behavior Initial
Value

animation-name De�ines the keyframe at-rule the animation will use none

animation-

duration

De�ines how long the animation will take to complete 0s

animation-

timing

-function

De�ines the acceleration curb for how the values get applied during the
animation

ease

animation-

delay

De�ines the delay period before the animation starts 0s

animation-

iteration

-count

De�ines the number of times the animation will play 1

animation-

direction

De�ines whether the animation should play forward, backward, or toggle
forward and backward

normal

animation-fill-

mode

De�ines how styles are applied to the target before and after animation
completes

none

Another property that can be used with animation is animation-play-
state which allows the developer to pause and start an animation. When resumed,
the animation will restart where it was paused rather than the beginning of the
sequence. The default value for animation-play-state is running. It needs to
be de�ined individually as its own property, however, and is not part of the
animation shorthand described in Listing 6-4. Giving the user the ability to pause an
animation, especially if the animation is not necessary to understanding the content
or the state of the application, can radically improve the usability of the application.
When considering an auto-advancing carousel, for example, adding the ability to
pause the auto-incrementation of panels will allow the user to control the speed at
which they view the content.

Animations can also be used when an object is being removed from the DOM,
such as when adding a display value of none, but because the display:none
property will be applied and completed before the animation �inishes, this cannot
be done with CSS alone. If when closing a menu, display:none is added to the
menu items, regardless of any animations or transitions set on the elements, the
menu will abruptly disappear as the animation will not be given the time to run
before the menu items are hidden. To counteract this, the JavaScript
animationend event is used in conjunction with the CSS to listen to the animation

state. animationend will trigger upon completion of the animation, at which
point display:none can be added to the elements which need to be hidden (see
Listings 6-7 and 6-8).

<body>

 <div class="show-hide">

 <button onclick="toggleAnimation()" id="button">

 Show

 </button>

 <div

 class="animation-container"

 id="animationContainer">

 </div>

 </div>

 <script>

 function showContainer() {

 animationContainer.classList.add('show');

 }

 function hideContainer() {

 animationContainer.addEventListener('animationend',

cleanup);

 animationContainer.classList.replace('show', 'close');

 }

 function cleanup() {

 animationContainer.classList.remove('close');

 animationContainer.removeEventListener('animationend',

cleanup);

 }

 </script>

</body>

Listing 6-7 Animation End Event HTML and JavaScript

@keyframes roll {

 0% { transform: translateX(-75vw) rotate(-360deg); }

 100% { transform: translate(0) rotate(0)}

}

@keyframes roll-reverse {

 0% { transform: translate(0) rotate(0)}

 100% { transform: translateX(-75vw) rotate(-360deg); }

}

.animation-container {

 background: linear-gradient(lightgrey, grey);

 border-radius: 50%;

 display: none;

 height: 100px;

 margin: 1rem auto;

 width: 100px;

}

.show {

 display: block;

 animation: roll 1s cubic-bezier(0.280, 0.840, 0.420, 1);

}

.close {

 display: block;

 animation: roll-reverse 1s cubic-bezier(0.280, 0.840,

0.420, 1);

}

Listing 6-8 Animation End Event CSS

When the element is “closed” or hidden, �irst a class with the exit animation is
added. Once the animation ends, the animationend event listener is triggered
and only then can the display property value be changed to none. The same can be
achieved with transitions using the transitionend event listener. Adding and
removing classes, rather than handling the close animation in JavaScript, helps keep
display-related logic in the CSS style sheet, increasing maintainability and keeping
separation of concerns.

Timing Functions
Whether creating a transition or an animation, a common value to de�ine is the
timing function. It determines the speed at which values change over the time it
takes for the animation to complete. Timing can help make the animation feel more
natural and re�lect physical world interactions more closely. When animating a
bouncing ball, one would expect the ball to accelerate after hitting the ground. If the
animation was linear, and the ball always moved at the same speed, the animation
would seem off. There are two speci�ic types of timing functions available.

Easing Functions
Easing functions de�ine smooth transitions based on the Bézier curve, named after
the French engineer Pierre Bézier. The curve is parametric,8 and the cubic variant is
de�ined by four points: P0, P1, P2, and P3. P0 and P3 de�ine the beginning and end of

the curve, respectively. P1 and P2 represent the control points which give the curve
its shape. Each point is de�ined by (x, y) coordinates.

The CSS cubic-bezier prede�ines P0 and P3 at �ixed points of (0, 0) and (1, 1)
representing the initial and �inal states of the animation. Left to be de�ined are P1
and P2 whose x values need to remain in a [0, 1] range, while the y values may exist
outside of the bounding box.

The CSS function looks as follows: cubic-bezier(x1, y1, x2, y2).
Although the timing can be customized , for convenience CSS includes named

common timing functions which include linear, ease, ease-in, ease-in-out, and ease-
out (see Table 6-4).

Table 6-4 Named Easing Functions9

Name Formula Curve

linear cubic-bezier(0.0, 0.0, 1.0, 1.0)

ease cubic-bezier(0.25, 0.1, 0.25, 1.0)

ease-in cubic-bezier(0.42, 0.0, 1.0, 1.0)

ease-in-out cubic-bezier(0.42, 0.0, 0.58, 1.0)

Name Formula Curve

ease-out cubic-bezier(0.42, 0.0, 0.58, 1.0)

To create bouncing effects, either or both y values should be set outside the [0,
1] range . For this, a custom function needs to be written such as in the following
function: cubic-bezier(0, 0.71, 0.64, 1.23).

The curve is plotted in Figure 6-4.

Figure 6-4 Sample Bounce Curve

Stepping Functions
Although not currently well supported across browsers, instead of a curve, a
stepping function which divides the animation into equal segments across time can
also be used. Two values are used to de�ine the animation’s timing: number of steps
(n) and step position (see Table 6-5). The syntax is as follows:

 animation-timing-function: steps(n, step-position);

Table 6-5 Named Stepping Functions10

Name Function Steps

Name Function Steps

step-start steps(1, start)

step-end steps(1, end)

jump-start steps(3, jump-start)

jump-end steps(3, jump-end)

jump-none step(3, jump-none)

Name Function Steps

jump-both step(3, jump-both)

When applied, the code and output would be as in Listings 6-9 and 6-10 and
Figure 6-5.

<body>

 <div class="jump-start">jump-start</div>

</body>

Listing 6-9 jump-start Sample Code CSS

body {

 box-sizing: border-box;

 padding: 36px;

 margin: 0;

}

body > div {

 box-sizing: border-box;

 margin-bottom: 3rem;

}

@keyframes jumpStart {

 0% {

 width: 0;

 background-color: white;

 border: 1px solid gray;

 }

 100% {

 width: 90vw;

 background-color: gray;

 border: 1px solid gray;

 }

}

.jump-start {

 animation-name: jumpStart;

 animation-duration: 5s;

 animation-iteration-count: infinite;

 margin-bottom: 4px;

 animation-timing-function: steps(5, jump-start);

}

Listing 6-10 jump-start Sample Code CSS

Figure 6-5 Jump-Start Output

Notice how the animation is already partially started. Because jump-start is
used, the initial state of width 0 and color white is skipped and the animation starts
with the container at a width of 20% of �inal state width. If jump-end had been
used, the container would have started at a width of 0, but never reached a width of
100%. The container would only have a width of 80% when the animation ended.

 Accessibility and Timing When considering timing, it is important to
make sure that the content does not �lash more than three times in a one-second
period. This is to prevent the induction of seizures due to photosensitivity in
users.11

Performance Considerations
When considering the effects of animations on performance, not all animations are
created equal. Animations that cause layout changes or the view to be repainted are
particularly taxing.12 For example, changes to height, width, or position affect layout
and cause elements on the page to be repositioned. Properties that cause the view
to repaint include color, background-position, and visibility. Animations affecting
layout and paint will be less performant than those that don’t.

Generally, for best performance, using the transform property is the best way to
go as it can lean on the GPU. Whenever possible, it is best to try and stick to

1

2

3

4

animation using opacity, translate, rotate, and scale.13

When performance issues do arise, it can be tempting to use the will-change
property. Will-change informs the browser ahead of time of the changes that
will be animated, allowing the browser to optimize for them; however, when
misused, it can do more harm than good. Some guidelines to the proper use of
will-change include the following:

Sparse use – It should only be used when it is actually needed. The browser
already attempts to optimize everything. Unnecessary use will actually slow
down the page.
Only on when needed – Should be turned on before the animation will trigger
and then turned off again to free up browser resources being used for
optimization.
Enough time – Optimization is time-consuming; therefore, will-change needs
to be applied to the element with enough time to take effect before the animation
is set to begin.14

Summary
This chapter covered transition, animations, and their differences as well as the
functions used to change the timing of how animations and transforms are applied.
Also covered were performance and accessibility considerations when dealing with
animations. Chapter 7 will go over preprocessors and their architecture
considerations and bene�its.

Footnotes
:hover. (August 14, 2019). Retrieved from https://developer.mozilla.org/en-

US/docs/Web/CSS/:hover

Focus Visible. (August 14, 2019). Retrieved from www.w3.org/TR/UNDERSTANDING-

WCAG20/navigation-mechanisms-focus-visible.html

Understanding Success Criterion 3.2.1: On Focus. (August 14, 2019). Retrieved from

www.w3.org/WAI/WCAG21/Understanding/on-focus.html

Focus Order. (August 14, 2019). Retrieved from www.w3.org/TR/UNDERSTANDING-

WCAG20/navigation-mechanisms-focus-order.html

https://developer.mozilla.org/en-US/docs/Web/CSS/:hover
http://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-focus-visible.html
http://www.w3.org/WAI/WCAG21/Understanding/on-focus.html
http://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-focus-order.html

5

6

7

8

9

10

11

12

13

14

Transition. (August 15, 2019). Retrieved from https://developer.mozilla.org/en-
US/docs/Web/CSS/transition

Understanding Motion. (August 26, 2016).

https://material.io/design/motion/understanding-motion.html

Head, Val. How fast should your UI animations be? (August 26, 2019). Retrieved from

https://valhead.com/2016/05/05/how-fast-should-your-ui-animations-be/

De�inition of Bézier curve and its properties. (August 29, 2019). Retrieved from

http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node12.html

<timing-function>. (August 29, 2019). Retrieved from https://developer.mozilla.org/en-

US/docs/Web/CSS/timing-function

<timing-function>. (August 29, 2019). Retrieved from https://developer.mozilla.org/en-

US/docs/Web/CSS/timing-function

Web Content Accessibility Guidelines (WCAG 2.1). (August 31, 2019). www.w3.org/TR/WCAG21

Animations and Performance. (August 31, 2019). Retrieved from

https://developers.google.com/web/fundamentals/design-and-

ux/animations/animations-and-performance

High Performance Animations. (August 31, 2019). Retrieved from

www.html5rocks.com/en/tutorials/speed/high-performance-animations/

CSS Will Change Module Level 1. (August 31, 2019). Retrieved from www.w3.org/TR/css-will-

change-1/

https://developer.mozilla.org/en-US/docs/Web/CSS/transition
https://material.io/design/motion/understanding-motion.html
https://valhead.com/2016/05/05/how-fast-should-your-ui-animations-be/
http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node12.html
https://developer.mozilla.org/en-US/docs/Web/CSS/timing-function
https://developer.mozilla.org/en-US/docs/Web/CSS/timing-function
http://www.w3.org/TR/WCAG21
https://developers.google.com/web/fundamentals/design-and-ux/animations/animations-and-performance
http://www.html5rocks.com/en/tutorials/speed/high-performance-animations/
http://www.w3.org/TR/css-will-change-1/

(1)

© Martine Dowden and Michael Dowden 2020
M. Dowden, M. Dowden, Architecting CSS
https://doi.org/10.1007/978-1-4842-5750-0_7

7. Preprocessors

Martine Dowden1 and Michael Dowden1

Brownsburg, IN, USA

For CSS there are several preprocessors available. These will take data,
written in their own particular syntax, and then output CSS for the
browser to consume. The bene�it of these includes access to
functionality such as color-editing functions or nesting rules that are
not yet available in CSS. They also gave us access to CSS variables before
they were supported by the language itself. Some of the most popular
processors include Sass, Less, and Stylus.

Note Examples in this chapter will use SCSS.1 These techniques are
available using other preprocessors; however, feature availability
and syntax will vary based on the preprocessor used.

Implications for Architecture
The way in which code is organized and architected can be very
different when using preprocessors than when using pure CSS because
of added functionality, such as mixins and the ability to extend classes.
The ability to compute values in ways simply not available outside of
preprocessors today brings the ability to write DRY semantic code. It
can be de�ined in just one place and then reused throughout the style
sheet not much differently than some of the object-oriented principles
used in other programming languages.

The downside of using preprocessors is that they add a layer of
complexity to the application that does not exist when using pure CSS.

https://doi.org/10.1007/978-1-4842-5750-0_7
https://sass-lang.com/documentation/syntax

Even though some preprocessors, such as Less,2 can be run in the
browser directly, it is not recommended for production use because it is
less performant and reliable than plain CSS. When using preprocessors,
we therefore need some sort of build step in order to compile the code
into CSS.

Debugging can also be a challenge, especially when using some of
the more complex or advanced features of the code. This stems from
the CSS being generated not matching one-to-one with the code being
written. For example, the properties and attributes being added to a
class could come from a mixin (more about mixins later in this chapter)
rather than part of the ruleset. The CSS being applied is the output, not
the mixin itself, so tracking back to which mixin created the output can
be dif�icult. Sourcemaps can help with this. A sourcemap is a �ile that
can be generated with the CSS which links the output back to the code
that generated it. But again, this needs to be set up speci�ically as part
of the build process.

So �irst, before even choosing the processor to be used, the question
of whether the added complexity is necessary should be asked.

Nesting
Nesting allows us to have a clear visual hierarchy, which CSS does not
have. The following CSS (Listing 7-1) can be nested (Listing 7-2),
making it evident at a glance what the hierarchy is.

nav {

 padding: 0;

 margin: 0;

}

nav ul {

 padding: 0;

}

nav ul li {

 padding: 10px;

 border: solid 1px blue;

 background: yellow;

 color: yellow;

}

Listing 7-1 CSS

nav {

 padding: 0;

 margin: 0;

 ul {

 padding: 0;

 li {

 padding: 10px;

 border: solid 1px blue;

 background: yellow;

 color: blue;

 }

 }

}

Listing 7-2 Nested SCSS

As much as it makes it very easy to know that the styles set on the
list item will only be applied to the navigation list items, nesting makes
it really easy to create overly speci�ic rules. In the preceding example,
nesting the list item inside of the unordered list is super�luous and does
not add any value. Having it nested under the navigation only, one level
higher than its current location, would be suf�icient.

Nesting can, however, bring clarity to some situations. Let’s look at
Listing 7-3.

a:link, a:visited {

 color: gray;

 font-variant: small-caps;

 border: dotted 1px rgba(0, 0, 0, 0);

 text-decoration: none;

 &:hover { border: dotted 1px cornflowerblue; }

 &:focus { border: solid 1px cadetblue; }

 &:active { border: double 1px darkcyan; }

}

Listing 7-3 Nested SCSS

The ampersand refers back to the parent element, so the hover is
placed on the anchor tag when it is a link, or a visited link. Nesting here
makes it very clear that the hover, focus, and active selectors are all
children of a:link and a:visited.

Without nesting, the code would have looked something like this
(Listing 7-4):

a:link,

a:visited {

 color: gray;

 font-variant: small-caps;

 border: dotted 1px rgba(0, 0, 0, 0);

 text-decoration: none;

}

a:link:hover,

a:visited:hover {

 border: dotted 1px cornflowerblue;

}

a:link:focus,

a:visited:focus {

 border: solid 1px cadetblue;

}

a:link:active,

a:visited:active {

 border: double 1px darkcyan;

}

Listing 7-4 Nonnested CSS

Without nesting, it is more dif�icult to tell at a glance that links and
visited links also have styles for hover, focus, and active states.
Furthermore, the nested code is more concise and does not repeat the
root elements, decreasing the chance of typos or errors.

Care when nesting must be taken in order not to create rules that
are overly speci�ic. This happens when elements are nested too deep.
However, it can help with code legibility.

Color Functions and Variables
Variables, although available today in CSS as discussed in Chapter 2,
were �irst made available through the use of preprocessors. The CSS
version (custom properties), although in�luenced by preprocessor
variables, does have some advantages over the preprocessor variables.
Custom properties can be accessed and changed via JavaScript, while
preprocessor variables cannot. In creating the CSS output, preprocessor
variables do not remain variables; they are replaced by their assigned
value. CSS custom properties, however, stay variables and can be
manipulated at any time, including during runtime.

Although variables can be used for any value, such as default
padding amount, they are extremely powerful when used in
conjunction with color functions to de�ine the theme of an application.
The brand colors for an application include those given in Table 7-1.

Table 7-1 Color Values and Usage

The colors can be set to semantic names based upon what their
usage will be and then manipulated using color functions when the
color value or saturation needs to be altered (Listing 7-1).

Color functions will vary based on the preprocessor used; most
include functions to lighten, darken, or shift the hue, saturation, or
transparency of a color. In Listing 7-5, we use scale-color() which
takes a color and then can alter any combination of the following color
properties: red, green blue, saturation, lightness, and alpha. When

setting lightness to 10%, we are making the color 10% lighter than the
original and keeping all other values the same.

$primary: #AEC5EB;

$accent: #E9AFA3;

$links: #AEC5EB;

$background: #F9DEC9;

$dark: #3A405A;

$light: #FAFAFA;

$border: solid 1px $light;

$dark-text: $dark;

$light-text: $light;

$spacing: 1.25rem;

body {

 background: scale-color($background, $lightness:

10%);

 color: $dark-text;

 padding: $spacing;

}

a:link, a:visited {

 color: $link;

}

a:hover, a:focus {

 color: scale-color($link, $lightness: -10%);

}

button {

 color: $light-text;

 background: $primary;

 border: $border;

 padding: $spacing;

}

section, article {

 background: scale-color($background, $lightness:

20%);

 padding: $spacing;

 margin-bottom: $spacing;

}

Listing 7-5 Colors

By using color transformation functions and variables, not only
don’t we have to remember the exact values for each of the colors and
any variations we may have in use, but we also increase our ability to
keep our theme consistent. Furthermore, if the colors were to change,
this could be done in one place. The eventuality of a color changing is
why color names should be based upon their usage rather than their
actual color. If the variable name was $pink, for example, and the
accent color was changed to purple, we would now have to either �ind
the variable name everywhere and update it, or we would have a
variable name that does not represent the color that is assigned to it.
Situations like this make maintainability very dif�icult and code
confusing. Selecting semantic variable names is incredibly important to
the maintainability of the code.

Mixins
Mixins allow developers to create sets of properties and values that can
easily be reused throughout the application.

Simple Mixin
The simple example shown in Listing 7-6 shows the use of a simple
mixin to de�ine a set of properties in one place and then include them in
another context. The @include property is used to assign the
previously de�ined mixin to the new context – an element in this case –
but it could just as easily be included within a class de�inition.

@mixin card {

 background: white;

 box-sizing: border-box;

 margin-bottom: 1rem;

 padding: 1rem;

 box-shadow: 1px 1px 3px silver

}

div {

 @include card;

}

Listing 7-6 Simple Mixin

Parameters
Mixins can also take parameters in order to change the outputs of the
mixin based on the parameters passed, as shown with the
$elevation parameter in Listing 7-7.

@mixin card($elevation) {

 background: white;

 box-sizing: border-box;

 margin-bottom: 1rem;

 padding: 1rem;

 $offset: $elevation * 1;

 $blur: $elevation * 2;

 box-shadow: #{$offset}px #{$offset}px #{$blur}px

silver;

}

div {

 @include card(3);

}

Listing 7-7 Mixin with Arguments

Arguments
Logic can also be added within the mixin. In Listing 7-8, styles are
applied differently based upon a non-zero $elevation.

@mixin card($elevation) {

 background: white;

 box-sizing: border-box;

 margin-bottom: 1rem;

 padding: 1rem;

 @if $elevation == 0 {

 border: solid 1px silver;

 } @else {

 $offset: $elevation * 1;

 $blur: $elevation * 2;

 box-shadow: #{$offset}px #{$offset}px #

{$blur}px silver;

 }

}

body {

 padding: 2rem;

}

h1 {

 margin: 0;

}

header {

 @include card(0)

}

div {

 @include card(2);

}

Listing 7-8 Mixin with Arguments and Logic

The advantage of using mixins, especially with arguments, is that it
allows for DRY code. The code is written once and managed in one
place but applied to multiple classes. The preceding code (Listing 7-8)
would compile to what is shown in Listing 7-9 and display Figure 7-1.

body {

 padding: 2rem;

}

h1 {

 margin: 0;

}

header {

 background: white;

 box-sizing: border-box;

 margin-bottom: 1rem;

 padding: 1rem;

 border: solid 1px silver;

}

div {

 background: white;

 box-sizing: border-box;

 margin-bottom: 1rem;

 padding: 1rem;

 box-shadow: 2px 2px 4px silver;

}

Listing 7-9 CSS Output

Figure 7-1 Mixins Output

Mixins are very powerful in preventing the need to duplicate code
or nonsemantic class names. Without mixins, the earlier code would
require a potentially in�inite number of classes, or have to rewrite the
border and shadow multiple times and then maintain it in multiple
locations. Another great application is when a speci�ic parameter might
apply to many aspects of an element, but differs depending on context,
while the rest of the element needs to stay consistent regardless of the
situation. Informational boxes to the user might be an example, where

there is a need for information, successes, warnings, and errors. The
boxes need to look the same except for color (Listings 7-10 and 7-11
and Figure 7-2).

<body>

 <p class="message info">Information</p>

 <p class="message success">Success</p>

 <p class="message warning">Warning</p>

 <p class="message error">Error</p>

</body>

Listing 7-10 Informational Boxes HTML

@mixin message($color) {

 background: lighten($color, 40%);

 border: solid 1px $color;

}

body {

 padding: 2rem;

}

.message {

 padding: 1rem;

}

.info {

 @include message(blue);

}

.success {

 @include message(green);

}

.warning {

 @include message(orange);

}

.error {

 @include message(red);

}

Listing 7-11 Informational Boxes SCSS

Figure 7-2 Informational Boxes

Even though the padding could have been included in the mixin, it is
separated out into its own class because when a mixin is added, it does
its computation and outputs all the code each time; therefore, mixins
are not a good use case for static information. Static styles are simply
programmatically being copied over into each class increasing the size
of the CSS and therefore upload time. Classes, defaults on elements, or
the use of the @extend at-rule are much better options for static
styles.

@extend
Extend, unlike mixins, prevents the duplication of code in the resulting
CSS. While a mixin copies the declaration block for each selector it is
included within, extend creates a single declaration block and
consolidates the selectors.

The advantage of this methodology is in creating base classes for
basic styles toward which semantically named classes will be pointed.
The code is neither duplicated nor copied and prevents the use of
numerous nonsemantic classes on an HTML element. For code

maintainability it also means that the style of the elements is controlled
in the CSS. If the style coming from extending another rule is no longer
wanted, we need only to remove the @extend. By simply adding the
class name to the HTML instead of using @extend , we would have had
to edit the HTML in order to change look and feel. By using @extend
instead of adding the same class name to a multitude of elements, we
continue to maintain a separation of concerns. Our elements can have
class names that match their purpose, rather than how they display,
and we handle the styling via the CSS.

Revisiting the example found in the “Mixins” section rather than
adding both message and the type to each class, we can create one class
that determines the type and has the defaults set by .message (see
Listings 7-12 and 7-13 and Figure 7-3).

<body>

 <p class="info-message">Information</p>

 <p class="success-message">Success</p>

 <p class="warning-message">Warning</p>

 <p class="error-message">Error</p>

</body>

Listing 7-12 Informational Boxes HTML – Revisited

@mixin message($color) {

 background: lighten($color, 40%);

 border: solid 1px $color;

}

body {

 padding: 2rem;

}

.message {

 padding: 1rem;

}

.info-message {

 @include message(blue);

 @extend .message;

}

.success-message {

 @include message(green);

 @extend .message

}

.warning-message {

 @include message(orange);

 @extend .message

}

.error-message {

 @include message(red);

 @extend .message

}

Listing 7-13 Informational Boxes SCSS – Revisited

Figure 7-3 Informational Boxes – Revisited

Notice both examples have the same resulting appearance. But the
latter allows for only having one class dictating the entire class for the
element rather than two. For code maintainability, the power of
@extend lies in the ability to declare the entire class in one place

without copy-pasting or duplicating the code both in the Sass and also
in the compiled CSS (see Listing 7-14 for the CSS output).

body {

 padding: 2rem;

}

.message, .error-message, .warning-message,

.success-message, .info-message {

 padding: 1rem;

}

.info-message {

 background: #ccccff;

 border: solid 1px blue;

}

.success-message {

 background: #4dff4d;

 border: solid 1px green;

}

.warning-message {

 background: #ffedcc;

 border: solid 1px orange;

}

.error-message {

 background: #ffcccc;

 border: solid 1px red;

}

Listing 7-14 Informational Boxes – Revisited Output CSS

Notice the message class now has multiple other selectors as well,
but was not duplicated in the output.

@Import

Imports allow the user to create partial �iles in which variables, mixins,
and reusable code can be placed. Sass imports work similarly to CSS
imports in that it copies the SCSS they contain to the style sheet they
are being imported by. They must therefore be used with caution. It is
very easy to bloat code by repeatedly importing an entire theme, for
example, into each component. Sharing mixins and variables, since they
are not copied, but produce an output within a style, is a perfect
application of the use of @import, because unlike classes, they do not
get copied.

Creating import �iles to have information accessible from anywhere
in the application becomes very interesting when dealing with
components because more often than not, such as when using Angular
out of the box or creating component in JavaScript and Shadow DOM,
the CSS is scoped and therefore in a separate �ile or area of the
application than the rest of the CSS. Adding variables and mixins to a
partial – a �ile to be imported into other �iles that do not have a use on
its own – helps keep the code DRY.

Note Partials are sometimes denoted by having an underscore at
the beginning of their name to separate them from style sheets.

Another use case of @import is to prevent an application’s CSS style
sheet from becoming an unmaintainable megalith of a �ile. By breaking
the CSS into smaller sections to be imported into a main style sheet, the
code can be easier to �ind, collaborate on, and maintain (see Listing 7-
15).

@import "_variables"

@import "nav"

@import "carousel"

 .

 .

 .

a:link, a:visited { ... }

 .

 .

 .

1

2

Listing 7-15 @import

Summary
In this chapter we looked at a very small subset of functionality brought
to use via the use of preprocessors. We looked at mixins, imports,
extends, color function, and variable and how they impact how we
might organize and structure our application’s CSS. In the next chapter,
we will look at how JavaScript can interact with our CSS especially in
the context of modern frameworks.

Footnotes
https://sass-lang.com/documentation/syntax

http://lesscss.org/usage/#using-less-in-the-browser

https://sass-lang.com/documentation/syntax
http://lesscss.org/usage/%2523using-less-in-the-browser

(1)

© Martine Dowden and Michael Dowden 2020
M. Dowden, M. Dowden, Architecting CSS
https://doi.org/10.1007/978-1-4842-5750-0_8

8. Frameworks, Libraries, and JavaScript

Martine Dowden1 and Michael Dowden1

Brownsburg, IN, USA

In a real-world application, your CSS does not function in isolation. This chapter covers some of the
important considerations of a modern front-end web application, including how your choice of CSS or
JavaScript frameworks may impact your application styles.

JavaScript
OK, yes this is a CSS book, so why are we suddenly talking about JavaScript? The reality is that a signi�icant
amount of front-end development is done using some sort of framework and/or UI library, many of which
rely on JavaScript. Furthermore, JavaScript is often used to manipulate CSS as a result of state change or user
interaction.

According to Stack Over�low’s 2019 annual survey, the most popular programming language for the past
seven consecutive years is JavaScript. The breakdown of the top ten can be found in Figure 8-1.1

Figure 8-1 Most Popular Programming, Scripting, and Markup Languages in 2019 According to Stack Over�low

The most popular web framework is still jQuery, followed by React and Angular. The top ten breakdown
is shown in Figure 8-2.2

https://doi.org/10.1007/978-1-4842-5750-0_8

Figure 8-2 Most Popular Web Frameworks in 2019 According to Stack Over�low

Manipulating CSS Using JS
Made easy by libraries such as jQuery, and vanilla JavaScript properties such as element.ClassList, we
have been manipulating our CSS via our JS for years. But what exactly does that do to speci�icity and
cascading? Table 8-1 lists some of the common ways of affecting visual output through JS and their impact
on speci�icity.

Table 8-1 CSS Altering JavaScript Methods

Property and Methods What It Does Effects on Speci�icity

element.ClassList

 • add()
 • remove()
 • replace()
 • toggle()
 • item()
 • contains()

Reads and manipulates the
classes attached to a particular
element.

Because styles are being applied by referencing classes, cascading and
inheritance will not be signi�icantly impacted.

element.style

Examples:

elem.style =

"color: blue, font-size:

12px"

Or

elem.setAttribute("style",

"color:blue; font-size:

12px"

Or

elem.style.color = "blue"

Adds styles inline on the
element.

Very dif�icult to override because they are inline. If the element already
has inline styles, they will be overridden by what is being applied by the
JavaScript.

Both a huge advantage and risk, JavaScript has the ability to easily override anything declared by CSS but
does not have to.

If we don’t want to mix CSS rules in our JavaScripts, the methods given to us via classList allow for adding
and removing classes to the element without ever touching the CSS itself. This brings with it the huge bene�it
of styling de�inition staying in CSS �iles and not being split between JS and CSS �iles.

Affecting styles or the DOM itself brings the advantage that the speci�icity of CSS being applied matters
very little since it will be overridden. Via this technique, regardless of any other context, as a developer, we

can dictate that if a user performs a certain action, or a particular state is achieved, a particular set of styles
will be applied regardless of other styling, or context. This technique is often used to show and hide dialog
boxes, for example, noti�ication messages. The advantage of this technique is that the style changes can stay
with its trigger, or action, and regardless of context, the styles being applied will not be overridden by
preexisting CSS.

There are situations where JavaScript allows us to do things that are simply not possible with pure HTML
and CSS solution. A perfect example would be using event listeners for the animation’s timing, start, or end
(see Listings 8-1 to 8-3 and Figure 8-3).

<body>

 <div class="image">

 <button onClick="rotateImage()" id="button">Rotate Image</button>

 </div>

</body>

Listing 8-1 Animation Listener HTML

html, body {

 padding: 36px;

 margin: 0;

}

@keyframes rotate {

 0% { transform: rotate(0deg); }

 100% { transform: rotate(360deg); }

}

.rotate { animation: rotate ease-in-out 500ms 1; }

.image { text-align: center; }

img { max-width: 100%; }

button {

 display: block;

 margin: 1rem auto;

 padding: 1rem;

 width: 25%;

}

Listing 8-2 Animation Listener CSS

var image, button;

(function() {

 'use strict';

 image = document.getElementById('image');

 image.addEventListener('animationend', reEnableButton);

 button = document.getElementById('button');

})();

function reEnableButton() {

 button.disabled = false;

 image.classList.remove('rotate');

}

function rotateImage() {

 image.classList.add('rotate');

 button.disabled = true;

}

Listing 8-3 Animation Listener JavaScript

Figure 8-3 Animation Listener Output

The button triggers the JavaScript to disable the button and add a class of rotate which makes the
image spin once. Because on page load, we set up the JavaScript to listen for animation’s ending, once the
animation is terminated, we can reset the page. The button is reenabled, and the rotate class is removed. In
this example, even though we are manipulating the CSS with JavaScript, the CSS classes are still de�ined and
maintained in the CSS �ile, and therefore, inheritance and cascading are not altered or affected.

Component-Based Architecture
When using component-based architecture, it becomes very important not only to theme your application to
your application’s brand/speci�ication, but also the UI library itself. Each library will have various levels of
themability and intricacies in terms of ease, as well as what is actually possible to style. When selecting a UI
library, understanding the customizability and how themable a library or framework is can save you from a
lot of headaches down the road. Encapsulation – restricting the component CSS to the component itself –
allows for writing CSS that only applies to a particular component and not to the rest of the application. If a
UI library’s components has very strict encapsulation and few theming options, it will be incredibly dif�icult
to style.

There are many different libraries and frameworks that create or use components. Each has slightly
different implementations. We are not going to look at all of them. When looking at how modern-day
JavaScript frameworks create and interact with components, most either use web components or emulate
them. Worth noting is that especially if the component is emulated, it will behave slightly differently than
what I will be describing in the following text. Angular has an emulated model and continues to support an
equivalent shadow piercing combinator (::ng-deep) but can be set to use web components instead, or set
to have no encapsulation at all. In React, it depends on how the CSS was set up in the project. The options
also run the gamut. Understanding exactly how much encapsulation your framework provides will help
make better decisions as to how to structure your CSS.

Libraries and Frameworks
By de�inition, libraries are collections of declarations that the application will use. A framework is an
abstraction and provides basic functionality, or a skeleton for the application. A framework may contain one
or more libraries.

UI libraries such as jQuery UI3 or Angular Material4 provide a series of components or widgets that can
be added to an application. They come ready made with styles and functionality. To customize their looks,
they need to be themed. Theming can either be done via tools, which spit out the necessary CSS such as
themerollers, or be done more manually following guidelines. Either way, the themability and therefore
customizability of the said library will vary. The variability is a direct result of how the components are
constructed and how easy the author has made it for element to be customized. Further customization
beyond what the theme will allow can often prove quite dif�icult and result in using extremely speci�ic
selectors, such as the use of !important. It is therefore very important, when considering libraries, to look
into what theming capabilities it has as well as how easy it is going to be to customize so its elements can
match your application.

The architecture of the library itself may also affect how it is used and in some cases may provide for
multiple approaches. Bootstrap5 is interesting because its structure allows for two radically different
implementations, each with their downfalls and bene�its.

The �irst, and probably most common implementation, is importing both the CSS and JavaScript directly
in the page, from a local source, via CDN, or using a package manager such as NPM, NuGet, or RubyGems.
The framework in its entirety is available and being applied. This means that a number of classes already

https://jqueryui.com/
https://material.angular.io/
https://getbootstrap.com/

have styles added to them and are ready to use on the web site. Some components, like modals, have
functionality that relies on JavaScript associated with them. These will also be readily available.

The drawbacks of this approach lie in three places:

1.
Naming is no longer semantic.

2.
The styles are essentially being controlled by the HTML.

3.
Everything is imported in its entirety even if it’s not being used.
Consider a static web site with three pages using the same basic layout for all three of its pages. The

layout contains one main section and an aside to the right of the main (see Listings 8-4 and 8-5 and Figure 8-
4).

<!DOCTYPE html>

<html lang="en">

<head>

 <title>Bootstrap</title>

 <meta charset="UTF-8">

 <!-- bootstrap -->

 <link rel="stylesheet"

href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css

integrity="sha384-

ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T"

crossorigin="anonymous">

</head>

<body class="container">

 <h1>Food</h1>

 <div class="row">

 <main class="col-md-9">

 <div class="jumbotron">

 <h2>Yum</h2>

 <p>Gummi bears chocolate bar powder brownie… </p>

 <button class="btn btn-warning">Call To Action</button>

 </div>

 <h2 id="cupcakes">Cupcakes</h2>

 <p>Chocolate chocolate bar tart cookie chocolate… </p>

 Read More

 </main>

 <aside id="bacon" class="col-md-3">

 <h2>Bacon</h2>

 <p>Bacon ipsum dolor amet pork loin chicken ham… </p>

 <p>Jowl spare ribs turkey cupim, pork chop sirloin… </p>

 Read More

 </aside>

 </div>

 <!-- Bootstrap scripts -->

 <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"

integrity="sha384-

q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"

crossorigin="anonymous"></script>

 <script

src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js

integrity="sha384-

UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"

crossorigin="anonymous"></script>

 <script

src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"

integrity="sha384-

JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"

crossorigin="anonymous"></script>

</body>

</html>

Listing 8-4 Bootstrap HTML

html, body {

 padding: 36px;

 margin: 0;

}

Listing 8-5 Bootstrap CSS

Figure 8-4 Bootstrap Output

The bene�it of this approach is its simplicity. Either with a custom theme, or just using defaults such as in
the earlier example, it is very fast to get up and running. A number of basic styles already exist and can be
used to just create a layout. The big downfall is in the maintainability of the code. Keeping consistency
becomes very dif�icult if there are multiple call to action buttons across multiple pages.

<button class="btn btn-warning">Call To Action</button>

If the btn or the btn-warning class is updated, all buttons that include this generic class across the
application will be updated, whether a call to action or not. The class gives no indication of what it might be
used for, or worse, such as in this example, it is being used because of its color, rather than for a warning.
The only other option is to go �ind all the call to actions in the application and update their class name.

Rather than the style sheet controlling how elements look, the style is now tightly bound to the HTML.
This is also true of the layout, wanting to change the aside to taking a third of the page rather than a quarter
would involve going to each page, and updating the HTML.

The other option is to take advantage of the available Sass mixins that Bootstrap makes available (see
Listings 8-6 and 8-7).

<!DOCTYPE html>

<html lang="en">

<head>

 <title>Bootstrap</title>

 <meta charset="UTF-8">

 <!-- Application CSS -->

 <link rel="stylesheet" href="./styles.css">

</head>

<body>

 <h1>Food</h1>

 <div class="container">

 <main>

 <div class="call-to-action">

 <h2>Yum</h2>

 <p>Gummi bears chocolate bar powder brownie… </p>

 <button>Call To Action</button>

 </div>

 <h2>Cupcakes</h2>

 <p>Chocolate chocolate bar tart cookie chocolate… </p>

 Read More

 </main>

 <aside>

 <h2>Bacon</h2>

 <p>Bacon ipsum dolor amet pork loin chicken ham pancetta… </p>

 Read More

 </aside>

 </div>

</body>

</html>

Listing 8-6 Bootstrap Mixins HTML

@import './node_modules/bootstrap/scss/functions';

@import './node_modules/bootstrap/scss/variables';

@import './node_modules/bootstrap/scss/mixins';

@import './node_modules/bootstrap/scss/jumbotron';

@import './node_modules/bootstrap/scss/buttons';

html {

 padding: 36px;

}

body {

 padding: 36px 15px;

 margin: 0 auto;

 font-family: -apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica

Neue",Arial,"Noto Sans",sans-serif,"Apple Color Emoji","Segoe UI

Emoji","Segoe UI Symbol","Noto Color Emoji";

 font-weight: 400;

 line-height: 1.5;

 color: #212529;

 box-sizing: border-box;

}

h1, h2 {

 margin-top: 0;

 margin-bottom: .5rem;

 font-weight: 500;

 line-height: 1.2;

}

h1 { font-size: 2.5rem ;}

h2 { font-size: 2rem ;}

.container {

 box-sizing: border-box;

 @include make-row(15px);

 & > * {

 box-sizing: border-box;

 @include make-col-ready(1rem);

 }

}

button { @extend .btn }

.call-to-action {

 box-sizing: border-box;

 @extend .jumbotron;

 button {

 @include button-variant($yellow, $yellow);

 }

}

a.read-more {

 @extend .btn;

 @include button-variant($gray-100, $gray-100);

}

@media (min-width: 756px) {

 body { max-width: 540px; }

}

@media (min-width: 768px) {

 body { max-width: 720px; }

 main { @include make-col(9); }

 aside { @include make-col(3) }

}

@media (min-width: 992px) {

 body { max-width: 960px; }

}

@media (min-width: 1200px) {

 body { max-width: 1140px; }

}

Listing 8-7 Bootstrap Mixins SCSS

This approach is not going to be as easy to get up and running with. Since it uses SCSS, it will require the
ability to process SCSS into CSS. Knowledge of SCSS and of what is available for mixins in the framework is

also required. Once past the setup and learning curve, however, we get some great bene�its. Because we are
now assigning the styles to classes via @include and @extend instead of applying generic class names to
elements in the HTML, we know our elements will look the same on all the pages. Elements across the entire
application can also be updated from one place rather than searching the site for all instances of a particular
concept. Lastly, only the parts of Bootstrap I am using are being imported which reduces page weight.

!Important Whenever trying to theme a component library or tweaking the styles from a CSS
framework, speci�icity can sometimes be challenging to wrangle, as the library or framework may already
be using selectors that are quite speci�ic; therefore, it may be tempting to use !important. Here be
Dragons!

Although there are situations where there truly is no other choice, or important truly is the lesser evil,
these instances are few and far between.

The use of !important increases the precedence of a declaration making it very dif�icult to overide
or to include in a normal cascade. No longer can you target a more speci�ic selector to change the style of
the element. You now need another more speci�ic important. This vicious cycle makes code incredibly
dif�icult to debug and maintain and even harder to expand.

So when overriding styles, take care that if you do use !important, it is done sparingly and with
intent rather than frustration.

Knowing the architecture of the library selected, and its capabilities, will help make informed decisions as to
how to structure your code for better long-term maintainability and performance.

Web Components
In the Document Object Model (DOM) , custom elements can be created and encapsulated by being attached
to the DOM using Shadow DOM. Shadow DOM is a subtree of DOM elements that can be attached to the
rendering document composed of a shadow host, shadow root, and shadow tree (see Figure 8-5).

Figure 8-5 Shadow DOM

Components created using this technique are fully encapsulated, and the author has complete control as
to what the consumer will be able to style vs. not because everything within the Shadow DOM is akin to a
black box from the perspective of the parent page or component. For a short while, we were able to ignore
the encapsulation by using shadow piercing combinators such as >>> or ::deep, but these have been
deprecated or removed from most browsers in favor of the upcoming CSS Shadow Parts 6 speci�ication
currently being re�ined. Even after this new speci�ication is implemented, however, the author of the

https://drafts.csswg.org/css-shadow-parts/

component will still control what users will be able to �iddle with; speci�icity, !important, and shadow
piercing combinations will continue to fail to edit styles that the component author did not open to being
altered.

Architecturally speaking, the bene�it of web components allows for styled web components that can be
dropped into any UI without worry of being altered by the parent application’s CSS. See Listings 8-8 to 8-11
and Figure 8-6.

<html lang="en">

<head>

 <title>Web Components</title>

 <link rel="stylesheet" href="./styles.css">

 <meta charset="utf-8">

</head>

<body>

 <h1>Components</h1>

 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi sed

neque semper ante mattis tempor. Morbi volutpat ex ante, eget vulputate

ligula pulvinar gravida.</p>

 <p></p>

 <section class="components">

 <my-card title="Coffee">

 <slot name="content">

 <p>Aged cortado, carajillo saucer wings aftertaste...</p>

 </slot>

 </my-card>

 <my-card title="Cats" class="dark">

 <slot name="content">

 <p>Chew master's slippers I is not fat, I is fluffy...</p>

 </slot>

 </my-card>

 </section>

 <div class="actions">

 <button type="button">More Components -></button>

 </div>

 <script src="./script.js"></script>

</body>

</html>

Listing 8-8 Web Component HTML

const actionButtonEvent = new CustomEvent('actions', {

 bubbles: true ,

 detail: { text: 'ok button' }

});

class MyCardComponent extends HTMLElement {

 constructor() {

 super();

 const shadow = this.attachShadow({ mode: 'open' });

 const card = document.createElement('div');

 card.setAttribute('class', 'card');

 const titleText = this.getAttribute('title');

 if (titleText) {

 const title = document.createElement('h2');

 title.innerText = titleText;

 card.appendChild(title);

 }

 const slot = document.createElement('slot');

 card.appendChild(slot);

 const actions = document.createElement('div');

 actions.setAttribute('class', 'actions');

 const button = document.createElement('button');

 button.innerText = 'OK';

 button.setAttribute('type', 'button');

 button.addEventListener('click', () => {

 this.dispatchEvent(actionButtonEvent);

 });

 actions.appendChild(button);

 card.appendChild(actions);

 const style = document.createElement('style');

 style.textContent = `@import './card.css'`;

 card.appendChild(style);

 shadow.appendChild(card);

 }

}

(function() {

 'use strict';

 customElements.define('my-card', MyCardComponent);

 document.querySelector('my-card').addEventListener('actions', e =>

console.log('outer actions event', e));

})();

Listing 8-9 Web Component JavaScript (script.js)

:host {

 font-family: sans-serif;

 --primary: mediumvioletred;

 --background: white;

 --text: #242529;

 --buttonText: white;

}

:host(.dark) {

 --background: #242529;

 --text: white;

}

.card {

 background: var(--background);

 color: var(--text);

 box-shadow: 1px 1px 1px var(--primary), 0px 0px 2px lightgrey;

 padding: 1rem;

}

h2 { margin: 0 1rem 0 0; }

.actions {

 text-align: right;

 margin-top: 1rem;

}

button {

 background: var(--primary);

 color: var(--buttonText);

 font-family: sans-serif;

 padding: .5rem 1.5rem;

 border: none;

}

Listing 8-10 Web Component CSS (card.css)

html, body {

 background: #fafafa;

 padding: 36px;

 margin: 0;

}

section.components {

 display: flex;

 margin: 0 -1rem;

}

my-card { margin: 1rem; }

.actions { text-align: center; }

button {

 background: rgb(187, 255, 120);

 border: none;

 border-radius: 1rem;

 box-shadow: 1px 1px 1px 1px gray;

 margin-top: 2rem;

 padding: .5rem 3rem;

}

.dark {

 font-family: monospace;

 font-size: 1.0625rem;

}

p, h2 { font-variant: small-caps; }

Listing 8-11 Web Component Page CSS (styles.css)

Figure 8-6 Web Component Output

Notice how the button styles do not interact with each other even though styles are being applied
directly to the button element in both style sheets. This is powerful because it means that components and
applications can be built independently and used with each other without the fear of naming collisions.
Some things do transfer through, however. The component, through the :host and lesser supported
:host-context selectors, can have awareness of its context. In this case, the component is speci�ically
looking to see whether its host has a class of dark. If it does, then it is styled differently. However, these are
preplanned styles from the author. Should another class name be passed to this speci�ic component, it would
continue to display its defaults, seen on the left of Figure 8-7.

Figure 8-7 Node Tree Including Slots

Some styles do bleed into the component. Elements in the slot or classes assigned directly to the host
(the custom tag) are subject to both the component styles and page styles. Notice the paragraph tags in
Figure 8-6; they take styles from both the parent and the component as described below.

Left component:

Browser default (serif) -> :host (sans-serif)

Right component:

Browser default (serif) -> :host (sans-serif) -> .dark (monospace)

:host is more speci�ic than the browser defaults, and in turn, .dark is more speci�ic than :host.
So why did the header also become monospace, when the buttons were unaffected? By adding a font-

family of sans-serif to .dark, we essentially set monospace as the default font-family on the :host, that is
as far as we can pierce into the component. The buttons have their own typeface speci�ied inside the
component CSS which is overriding the :host default and were therefore unaffected. Further attempts to
reach into elements inside the component via speci�icity, such as doing .dark button { ... } even if
no styles are set for that property, will not work.

The reason we were able to style the paragraph tags, and will continue to be able to do whatever we
want with them, is because they are in a slot. The contents of the slot are actually being controlled by the
parent. Looking at the DOM tree, one can see that the slot content lives outside of the shadow tree as seen in
Figure 8-7.

The slot inside the shadow tree is nothing more than a placeholder. The content of the slot is in a sibling
node of the shadow-root, and not in the shadow-tree itself. It is therefore not encapsulated like the rest
of the component and can be styled like any other element on the page. Because it is a child of the host,
however, styles assigned to the shadow host will cascade normally to those elements.

Styling Applications That Use Web Components
When creating an application that uses components, it is easy to start thinking only in terms of small
reusable items and to lose sight of the greater picture. Consistency of typeface, colors, button styling, and so
on across the application is something I think we can all agree is a good thing. However, if we are rewriting
those styles in every component, we are setting ourselves up for discrepancies and a maintainability
nightmare. How tightly encapsulated the components are affects the approach.

Regardless of encapsulation, however, starting with a �ile in which some reusable values are set to
semantic, easily readable variables to be imported in all of the places helps in two ways: The same �ile is
used everywhere, so consistency is gained, and because those values it contains are also being maintained in
one place, should the primary brand color switch from blue to purple, one is not stuck looking for every
instance of the color in the application. When using a precompiler such as Sass or Less, this is also a great
place to set up some mixins. For more information about precompilers, see Chapter 7. Listing 8-12 shows an
excerpt of what such a �ile might look like.

/∗ brand colors ∗/
--primary: #8A4F7D;

--accent: #88A096;

--border-color: #DDDDDD;

--link-color: var(--accent);

--background: #FAFAFA;

--font-family: sans-serif;

--box-shadow: 1px 1px 1px var(--primary), 0px 0px 2px lightgrey;

/∗ breakpoints ∗/
--small: 500px;

--medium: 800px;

--large: 1200px;

...

Listing 8-12 Sample Variable File

If the application still has a base style sheet whose styles are applied in and out of all components, it is a
great place to put defaults such as what a link should look like and behave like on hover and focus, what
headers should look like, and what are the application’s base font and colors. This is a great place to set up
your theme. (see Listing 8-13).

1

2

3

@import 'variable.css';

html, body {

 Background: var(--primary);

 padding: 0;

 margin: 0;

 font-family: var(--font-family);

 color: black

}

h1, h2, h3, h4, h5, h6 {

 color: var(--primary);

}

a:link,

a:visited {

 color: var(--accent);

}

a:hover,

a:focus {

 text-decoration: underline;

}

...

Listing 8-13 Sample Theme File

Once these two �iles are set up, components should only need to worry about layout and exceptions,
things that are speci�ic to that component and nothing else. A great gauge of a style or set of styles belonging
in one of these �iles would be if you �ind yourself copying and pasting the same thing over and over again. If
this is the case, it is time to consider whether these styles need to be imported or set as defaults somewhere.

If the components are tightly encapsulated and a theme �ile that cascades styling throughout the
application is not possible, variables that can be imported become really critical. Importing an entire theme
�ile into every component will just bloat the application because even though maintained in one place, it will
essentially be copied in each component. Possibilities here include the use of preprocessors in order to
create mixins, or breaking the theme �ile up into smaller chunks, buttons, tables, links, and so on so that only
the needed portions get imported.

Summary
In this chapter we covered the common interaction mechanisms between CSS and JS to show how JS
interacts with (and sometimes interferes with) our style sheets. We also looked at how the architecture of
the libraries we use can affect how we structure our code. In the next chapter we will dive into various
architectural best practices along with speci�ic CSS architectural patterns, showing their strengths and
weaknesses.

Footnotes
Developer Survey Results 2019. (2019). Retrieved from Focus Visible. (August 14, 2019). Retrieved on October 29, 2019, from

https://insights.stackoverflow.com/survey/2019#technology

Developer Survey Results 2019. (2019). Retrieved from Focus Visible. (August 14, 2019). Retrieved on October 29, 2019, from

https://insights.stackoverflow.com/survey/2019#technology

https://jqueryui.com/

https://insights.stackoverflow.com/survey/2019%2523technology
https://insights.stackoverflow.com/survey/2019%2523technology
https://jqueryui.com/

4

5

6

https://material.angular.io/

https://getbootstrap.com/

https://drafts.csswg.org/css-shadow-parts/

https://material.angular.io/
https://getbootstrap.com/
https://drafts.csswg.org/css-shadow-parts/

(1)

© Martine Dowden and Michael Dowden 2020
M. Dowden, M. Dowden, Architecting CSS
https://doi.org/10.1007/978-1-4842-5750-0_9

9. Architectural Patterns

Martine Dowden1 and Michael Dowden1

Brownsburg, IN, USA

In order to produce an architectural approach for your CSS, it’s
important to clearly establish your goals and then settle on a general
methodology. In this chapter we propose goals, guidelines, and
methodologies for your consideration.

Approach
When working on web development, it’s important to build a consistent
approach that is sensitive to external factors and business demands.
There are also considerations for our development team to be sure we
can rapidly produce the desired results, and that the web site continues
to look and work as expected as content is added and changed over
time.

Note Since both element and component are technical words with a
speci�ic meaning in the context of the Web, we will use the word
widget to refer to reusable building blocks made up of HTML+CSS.

While many frameworks will implement a widget with either a
native or framework-based web component, this is neither a
requirement nor a goal of good CSS architecture.

Goals
Referring back to Chapter 1, our goals are to achieve separation of
concerns through high cohesion and low coupling. We want to

https://doi.org/10.1007/978-1-4842-5750-0_9

minimize the cost of maintenance and overall development time while
improving the developer experience. Taking these high-level goals as a
starting point, we can recommend the following concrete objectives for
our HTML and CSS:

We should be able to design a modularized widget with HTML and
CSS that stands on its own without depending on external CSS.
When we drop a widget into our web site, we want it to take on the
overall look and feel of our site and brand.
It shouldn’t be necessary to arti�icially boost speci�icity or
precedence (such as by adding an ID selector or !important
annotation) to style a widget as intended.
General content edits in an HTML document (inserting images,
adding paragraphs, adjusting rows/columns in a table, adding items
to a list, etc.) should not necessitate updates to the style sheets.
It should be easy for someone new to join our team and �igure out
how to make adjustments to the design of our pages and widgets.
Our styles should be easy to read, understand, and troubleshoot.
The design of our web sites should be easy to re-theme without
impacting the layout and functionality of the site.
It should be straightforward to make design changes (such as colors
and typography) without needing to use search-and-replace on the
CSS properties across our style sheets.
We should be able to adjust the styles of Widget-A and Widget-B
independently, without worrying about changes to one impacting the
other unintentionally.
User’s wishes with regard to style should be respected to improve
their experience and overall accessibility.

In his 2012 blog post about CSS architecture,1 Philip Walton issued
an important reminder: “stripping [sic] all presentational code from
your HTML doesn’t ful�ill the goal if your CSS requires an intimate
knowledge of your HTML structure in order to work.”

Guidelines
Working from the earlier listed goals, there are a few general guidelines
we can derive that may prove helpful in selecting the right

methodology. These aren’t hard-and-fast rules, but a reasonable set of
default positions you may choose to work from.

Avoid class names that mirror the name of the tag they are on,
attribute values, or pseudo classes (e.g., no more <button
type="button" class="button"> or <input
type="password" class="password">).
Avoid generic class names such as content, container, wrapper,
right, and left. These names don’t provide any meaningful
understanding as to their usage or intent, and they are subject to
naming collisions with other style sheets on our project or with
third-party libraries.
Generally, avoid using IDs as selectors.
Prefer selector speci�icities between [0 1 0] and [0 2 2]. Any lower
and you run the risk of leaking styles into the rest of your site. Any
higher and you risk overwriting inheritance or making a value
unintentionally sticky. Higher speci�icities also risk being overly
verbose and either brittle or dif�icult to understand. Use higher
speci�icity selectors with purpose and care.
Avoid using !important in your style sheets and inline styles in
your HTML.
Optimize your CSS architectural decisions for the developer
experience, and the ease and accuracy of ongoing changes, rather
than becoming overly concerned with performance of the style
sheets.
Choose a consistent naming strategy.
Separate concerns.
Use child and sibling selectors only when necessary (ideally just
within a widget), but avoid the use of descendant selectors as they
have an unknown amount of impact.

Methodologies
For most things in code, there is more than one way to approach any
given problem. CSS architecture is no different. There are four patterns
that stand out among the rest when considering how to structure one’s
code and name one’s classes: BEM, OOCSS, SMACSS, and ITCSS as listed

in Table 9-1. We will discuss each of these in the following text,
highlighting some of their strengths and weaknesses.

Table 9-1 CSS Methodologies

Year Creator Methodology: Of�icial Web Site

2008 Nicole Sullivan OOCSS: https://github.com/stubbornella/oocss/wiki

2009 Yandex BEM2: https://en.bem.info/methodology/

2012 Jonathan Snook SMACSS: http://smacss.com/

2015 Harry Roberts ITCSS3: https://itcss.io/

One thing the following methodologies have in common is the heavy
use of classes in both the HTML and CSS. They all agree on one speci�ic
point – the only use classes serve in the HTML is for CSS or JavaScript
binding.

It is important to point out that many CSS professionals mix and
match their favorite parts of each of these methodologies. As always,
choose what works for you and your team, but be consistent about it.

OOCSS
Originally presented by Nicole Sullivan at Web Directions North, Object-
Oriented CSS (OOCSS) borrows concepts from Object-Oriented Design
in order to provide structure to CSS. The Object in OOCSS is what we
have been calling a widget and is de�ined by Sullivan as “a repeating
visual pattern, that can be abstracted into an independent snippet of
HTML, CSS, and possibly JavaScript. That object can then be reused
throughout a site.”4

There are two core rules of OOCSS that aim to produce �lexible,
modular, and swappable widgets. They are

Separate structure from skin
Separate container from content

These rules will be illustrated using the HTML in Listing 9-1.

<body>

 <div class="sidebar theme-light">

 <nav>

https://github.com/stubbornella/oocss/wiki
https://en.bem.info/methodology/
http://smacss.com/
https://itcss.io/

 Home

 About

 </nav>

 <form class="login">

 <input type="text" placeholder="Username">

 <input type="password"

placeholder="Password">

 <button type="submit">Login</button>

 </form>

 </div>

 <main>

 <section class="hero theme-light">

 <p>Lorem ipsum dolor sit amet...<p>

 <button class="call-to-

action">Subscribe</button>

 </section>

 </main>

</body>

Listing 9-1 OOCSS Example HTML

Separate Structure from Skin
Structure (or layout) refers to the location of elements on the page, or
the function and interaction of those elements. Layout properties
include those items that impact size and position of elements, such as
height, width, margin, padding, and overflow.

Skin (or theme) refers to the visual aspect of the elements. Theme
properties include color, border, box-shadow, font, and
opacity, among others.

The structure and skin should be applied through different classes
as shown in Listing 9-2.

/* OOCSS wants this */

.theme-light {

 color: slategray;

 background-color: lightgoldenrodyellow;

 border: 1px solid navy;

}

.sidebar {

 padding: 1rem;

 float: left;

 width: 200px;

}

.hero {

 margin: 1rem 1rem 1rem 250px;

 padding: 1rem;

}

/* Not this */

.sidebar {

 color: slategray;

 background-color: lightgoldenrodyellow;

 border: 1px solid navy;

 padding: 1rem;

 float: left;

 width: 200px;

}

.hero {

 color: slategray;

 background-color: lightgoldenrodyellow;

 border: 1px solid navy;

 margin: 1rem 1rem 1rem 250px;

 padding: 1rem;

}

Listing 9-2 OOCSS Separate Structure from Skin

This approach allows theming to be applied to a wide range of
elements and maintained in just a single location. In order to
implement OOCSS as intended, it will be necessary to add classes to the
HTML to avoid relying solely on the semantics of the HTML.

Separate Container from Content

This basically means to prefer styling based upon attributes rather than
location. So given the HTML in Listing 9-1, we have the CSS shown in
Listing 9-3.

/* Given this default */

button {

 background-color: lightblue;

}

/* OOCSS wants you to do this */

.call-to-action {

 background-color: lightgreen;

}

/* Not this */

.hero button {

 background-color: lightgreen;

}

Listing 9-3 OOCSS Separate Container from Content

There are several purposes for this recommendation such as better
consistency and maintainability. Some speci�ic goals:

Buttons look the same regardless of location, unless the HTML
speci�ies something else via class.
All elements with the call-to-action class will have the same
look, regardless of tag or location.
Looking at the HTML for the button, I can easily �ind its ruleset.
Avoids arti�icially in�lating the speci�icity allowing styles to be
predictably overridden when necessary.

While these are general guidelines without providing too many
speci�ics, there are no apparent problems with following these
recommendations.

However, do keep in mind that CSS requires every property to have
a value, so any values not provided will use defaults. Also different
elements (say, <a> and <button>) have different default values for
these properties and a different default appearance. So when using an

approach like OOCSS and leaning on class selectors without an
accompanying type selector, consider what might happen when this
class is applied to a new element with different defaults.

BEM
BEM stands for Block, Element, Modi�ier , which summarizes the
naming convention used and overall approach to organization. The
“Block” in BEM refers to our concept of the reusable widget. The use of
“Block” and “Element” in BEM is unfortunate as the naming overlaps
similar, but not identical, HTML concepts with those same names. (To
avoid confusion we’ll use the BEM concepts in italics within this
chapter.)

While BEM is a full-blown front-end methodology, it is the naming
convention that has become most popular among CSS developers. The
naming follows this pattern:

block__element--modifier

The use of two underscores and hyphens between naming is so that
a single hyphen can be used within a section name, such as

login-form__password-field--visible

One common question in BEM is how to decide if a given item
should be a block or an element. The general guideline is that if the
section of code cannot be used separately from its parent container,
then it’s an element. If it can be reused independently, then it’s a block .5

The HTML in Listing 9-4 shows an example of BEM naming using
the same basic HTML structure as our OOCSS example.

<body>

 <div class="sidebar sidebar--theme-light">

 <!-- Mix: both an element and a block -->

 <nav class="sidebar__nav nav">

 <li class="nav__item">Home

 <li class="nav__item">

 About

 </nav>

 <form class="login-form">

 <input type="text" placeholder="Username">

 <input

 type="password"

 class="login-form__password-field--

visible"

 placeholder="Password">

 <button

 class="login-form__submit"

 type="submit">Login</button>

 </form>

 </div>

 <main>

 <section class="hero hero--theme-light">

 <p>Lorem ipsum dolor sit amet...<p>

 <button

 class="hero__call-to-

action">Subscribe</button>

 </section>

 </main>

</body>

Listing 9-4 BEM Example HTML

In many cases you may see Nicolas Gallagher’s simpli�ied BEM
naming convention6 referenced, which looks something like this:

ComponentName-descendent--modifier

As you may have noticed, this notation replaces hyphenated section
names with camel case and uses a better naming convention that
doesn’t overlap with HTML. Updating our HTML example may give
something like the code in Listing 9-5.

<body>

 <div class="Sidebar Sidebar--themeLight">

 <!-- Mix: both an element and a block -->

 <nav class="Sidebar-nav Nav">

 <li class="Nav-item">Home

 <li class="Nav-item">

 About

 </nav>

 <form class="LoginForm">

 <input type="text" placeholder="Username">

 <input

 type="password"

 class="LoginForm-passwordField--visible"

 placeholder="Password">

 <button

 class="LoginForm-submit"

 type="submit">Login</button>

 </form>

 </div>

 <main>

 <section class="Hero Hero--themeLight">

 <p>Lorem ipsum dolor sit amet...<p>

 <button class="Hero-

callToAction">Subscribe</button>

 </section>

 </main>

</body>

Listing 9-5 Simpli�ied BEM HTML

One goal of BEM is to �latten the structure inside of a block so that
the related CSS doesn’t necessarily have to change if the nesting of the
HTML changes. In the example from Listing 9-4, we could change from
using and tags to using <div> tags for the nav__item

and the CSS would not need to change. As this illustrates, BEM
discourages using HTML elements as CSS selectors .

Another goal of BEM is predictable and consistent naming and
simple maintainability. For instance, it should be very easy to perform a
text search on a project to �ind everywhere a given class name is used,
making it possible to remove unused rules from our style sheets with
con�idence.

One bene�it of BEM is that the style sheet can be very easily broken
into multiple �iles with a high degree of con�idence, based upon block.

The use of modi�iers in BEM contradicts the recommendation of
OOCSS to create general-purpose and reusable styles that represent the
skin or theme. This can be at least partially overcome using SCSS
mixins, but is a difference worth noting. While it makes BEM very
predictable, it greatly reduces the ability to compose reusable styles in
favor of being very explicit .

SMACSS
Scalable and Modular Architecture for CSS (SMACSS) is a CSS
methodology and a book7 of the same name, both by Jonathan Snook.
At its core SMACSS is a categorization system for rulesets. There are
�ive categories:

Base – The base rules establish the defaults. Each rule should
generally apply to just one element. This is a great place for
normalization and base font size.
Layout – This is where we put the dimensional and positioning
declarations, along with any glue we may need for our widgets to
work together.
Module – These are where we �ind the reusable widgets in SMACSS.
These modular design units such as callouts, sidebars, and login
forms are de�ined here.
State – Most web applications reveal a large amount of state visually
within the design components, which belong here. This may include
such values as visible/hidden, active/inactive, hover, focus, and
expanded/collapsed.
Theme – Declarations that impact the look, feel, and brand (but not
the layout or functionality) are generally thematic. This is similar to

the skin concept from OOCSS.

The purpose of categorizing things is not to create arti�icial barriers,
but to better codify repeating patterns within the design.8 SMACSS does
not penalize exceptions to the categorization guidelines, but simply
recommends that exceptions be justi�ied as advantageous.

Class Naming
Rules in the base category typically do not use classes and have no need
for a naming convention. For layout rules, use an l- pre�ix (lowercase
“L” followed by a hyphen) on class names, such as .l-leftnav. For
state rules, use an is- pre�ix such as .is-visible. These rules are
shown in Listing 9-6 to illustrate how they �it within the HTML
document.

<body class="l-leftnav">

 <div id="sidebar" class="sidebar-left">

 <!-- Mix: both an element and a block -->

 <nav class="nav">

 <ul class="l-stacked">

 Home

 About

 </nav>

 <form class="login">

 <input type="text" placeholder="Username">

 <input

 type="password"

 class="is-visible password"

 placeholder="Password">

 <button type="submit">Login</button>

 </form>

 </div>

 <main>

 <section class="hero hero-light">

 <p>Lorem ipsum dolor sit amet...<p>

 <button class="call-to-

action">Subscribe</button>

 </section>

 </main>

</body>

Listing 9-6 SMACSS Naming

As you can see in Listing 9-6, modules (widgets) simply have a
meaningful name. We can further clarify modules by “subclassing”
which adds a new section to the name, similar to a modi�ier in BEM. For
example, .hero-light would be a subclass of .hero. Listing 9-7
shows how the naming convention can be used within a style sheet.

/* SMACSS wants you to do this */

.l-leftnav #sidebar { ... }

.login input[type=password] { ... }

.l-stacked > * { ... }

.hero { height: 8rem; border: 2px solid green; }

.hero-light { border-color: lightgreen; }

/* Not this */

#sidebar.sidebar-left { ... }

.login .password { ... }

.l-leftnav .nav li { ... }

.hero { height: 8rem; border: 2px solid green; }

.hero.hero-light {

 height: 8rem;

 border: 2px solid lightgreen;

}

Listing 9-7 SMACSS Example CSS

Recommendations
There are two overarching goals to the SMACSS recommendations:

1.
Improve semantics – This means making it easier for developers
to understand how and why widgets and elements are being used.

2. Increase orthogonality – In the SMACSS book, Snook states the

goal as “Decrease reliance on speci�ic HTML,”9 which simply means
restructuring of HTML should have minimal impact on our CSS.
There are a few guidelines that the methodology recommends

based upon these goals:

Trigger layout-speci�ic changes based upon a layout class, not a page
name.
Use module (widget) class names instead of HTML elements in
selectors.
Avoid setting thematic defaults on common elements such as input
�ields, buttons, and tables.

As you’ve probably noticed, these recommendations closely mirror
those we established at the beginning of the chapter, which were
derived from our exploration of software architecture in Chapter 1.

ITCSS
Created by Harry Roberts, Inverted Triangle CSS (ITCSS) attempts to
address selector speci�icity using the natural priority of CSS. The style
sheets are relegated into layers10 based upon their purpose very
differently from OOCSS and SMACSS, as shown in Figure 9-1.

Figure 9-1 ITCSS Diagram

The base of the triangle (at the top of the diagram) represents the
broadest and least speci�ic rules, with the most explicit rules near the
point of the triangle. These layers are further de�ined as follows:

Settings – Intended for preprocessors, this layer includes variable
de�initions and site-wide settings such as font and colors. Should
generally not output any CSS.
Tools – Global mixins and functions for further reuse. This is
primarily intended for preprocessors and should generally avoid
outputting CSS.
Generic – Normalization and reset of styles, CSS variables, and box-
sizing settings. From this layout on should produce CSS. This is
similar to the base rules category in SMACSS.
Elements – Default styles for standard HTML elements.
Objects – Class-based selectors which de�ine reusable framework
objects such as the OOCSS Media Object.

Components – This is where our widgets come into play and the
majority of styles will be in the Objects or Components layers.
Utilities – Helper classes that may need to be able to override
everything earlier in the triangle. For example, show/hide classes.

Rather than de�ining naming or design practices, ITCSS
recommends a speci�ic structure and organization of the style rules
themselves, without providing too much detail around what sorts of
rules are permitted.11 As such ITCSS is fully compatible with OOCSS,
SMACSS, and BEM.

Processes
One of the important roles a software architect often �ills is to help
establish good processes and practices for their team. It’s important
that your processes �it into the larger framework of web site publishing
and delivery.

Imagine you are building a web site that pulls content from a
Content Management System (CMS) which is managed by the
company’s marketing team. While it may be possible to modify the
output produced by the CMS or to train the marketing team to add
classes to certain elements, this may put too much pressure on the
content team. It may be more reliable to simply write CSS that achieves
the desired results with the content you receive. In this example the
web development team has control over some of the HTML, but not all
of it.

Decision Making
Often there will be two or more approaches that can be used to ful�ill a
goal, and it will be up to you to compare these options and make a
decision. Your methodology of choice will likely be the �irst such
decision, but Listing 9-8 illustrates some code decisions based upon the
question, “How do we highlight the password in red on error?”

/* CSS Rulesets */

.red-border: { border: 2px solid red; }

.password: { color: black; }

<!-- Sample HTML -->

<form class="login">

 <input type="text" placeholder="Username">

 <input type="password" placeholder="Password">

 <button type="submit">Login</button>

</form>

/*** How do we highlight the password in red on

error? ***/

/* OPTION 1 - Add CSS Selector */

.login [type=password]:invalid,

.red-border: {

 border: 2px solid red;

}

.password: { color: black; }

/* OPTION 2 - Use SCSS Mixin */

.login [type=password]:invalid { .red-border; }

<!-- OPTION 3 - Add class to HTML -->

<input

 class="red-border"

 type="password"

 placeholder="Password">

Listing 9-8 CSS Reuse Dilemma

The example in Listing 9-8 shows three options to code reuse based
upon state, but Listing 9-9 shows two different ways to set the default
font on a page.

/* Cascade from the <body> tag */

body { font-family: helvetica, arial, sans-serif;

}

p { font-family: 'Lucida Handwriting', cursive; }

/* Set explicitly on every element */

* { font-family: Consolas, 'Liberation Mono',

monospace; }

p, p * {

 font-family: 'Lucida Handwriting', cursive;

}

Listing 9-9 Set Default Font

Most style sheet authors choose to cascade font default from the
body tag as shown in Listing 9-9 rather than using the universal
selector; however, both are technically possible. Because the universal
selector has a speci�icity of zero, any rule will override it; however,
since it’s set on every single element, simply resetting the font on a the
<p> element will not change the font for any child elements such as
anchor tags, de�initions, buttons, labels, and so on. To achieve this
behavior (which is the default when depending on inheritance from
body), we need to either apply the change to each subelement
individually or use the universal selector again.

Note Class names only provide meaning to page authors and
developers. Your choice of class names should re�lect this. Your class
names do not convey any meaning whatsoever to user agents or
systems and are never displayed to the human visitors to your
pages.12

More than likely, whatever approach you choose, your style sheets will
not satisfy all of the goals stated at the beginning of the chapter. You’ll
need to decide which goals are most important for your team and
situation. Some speci�ic questions you may need to ask include

How big is your project/how big will it get (widgets, �iles, etc.)?
How big is your team/how big do you expect to grow?
Do you need to support interchangeable themes?
Do your developers have more control over the HTML or the CSS
(many applications involve pulling content, data, or styles from
external sources)?

Linting

One way to help ensure cross-browser compatibility, accessibility, and
generally good code is via linting. Linters are tools that check syntax
and formatting for errors. Depending on the tool used, some will also
check for inef�iciencies or problematic patterns. The W3 has a
validation service13 but many prefer to validate code as they go. Tools
such as CSS Lint can be run in the browser14 via command line15 or
even as editor extensions.16

Precompiled CSS, such as Sass or Less, will not compile if not valid,
so linting is much less of an issue. However, linters do exist for
precompiled CSS languages and can prove very helpful in debugging
and in �lagging potentially problematic rule combinations and
redundancy.

Testing
Like most code, CSS can be tested. There are a number of libraries
available to do just that. There are two main ways that CSS can be
tested: via unit tests or snapshots.

Unit Testing
Unit testing CSS involves checking that styles that are expected to be
applied are in fact set on the element. Libraries such as Quixote17 test
that what is being rendered in the browser is what the author intends.
The author can select a speci�ic element by class or ID and verify any
CSS property.

When using precompilers, mixins can also be tested. Similar to
functions, mixins have inputs and outputs; therefore, outputs can be
tested based on input passed. Libraries such as Barista18 or True19 can
make sure that mixin outputs match the author’s intent.

Visual Regression Testing
The other way to test CSS is through visual regression testing. Libraries
such as Cypress20 or Jest21 provide a framework to take and compare
snapshots. By checking current snapshots against the reference ones,
developers can be noti�ied of unintended side effects when CSS is
changed. Any nonmatching snapshots will raise a �lag for the author to
check on.

1

2

Code Review
While linting and automated testing are a fantastic way to validate your
CSS in a predictable way, there is a limit to how much of your CSS
architecture can be validated with automation. Meaningful code
reviews can be a great way to verify

– Consistency in implementation
– That architectural decisions are being followed
– Minimal code repetition

Furthermore, code reviews are an opportunity to have open
discussions about architectural decisions and speci�ic consequences of
those decisions. Code reviews should never be used as a way to judge
other developers, but as a forum for sharing knowledge, learning from
each other, and ensuring the long-term success of your team and
project.

Summary
In this chapter you have learned about the architectural patterns we
can use to build our style sheets using everything CSS has to offer.
Speci�ically, we discussed

Goals and guidelines that can help assess various options
The CSS methodologies OOCSS, BEM, SMACSS, and ITCSS
Processes you can use to evaluate your decisions to stay on track

Now you’re ready to select and implement a CSS architecture
methodology on your own projects! Best of luck, and happy coding!

Footnotes
https://philipwalton.com/articles/css-architecture/

Gallagher did not create BEM, but popularized a simpli�ied syntax for CSS based upon BEM.

https://philipwalton.com/articles/css-architecture/

3

4

5

6

7

8

9

10

11

12

13

14

www.creativebloq.com/web-design/manage-large-scale-web-projects-

new-css-architecture-itcss-41514731

https://github.com/stubbornella/oocss/wiki

https://en.bem.info/methodology/quick-start/#should-i-create-a-

block-or-an-element

http://nicolasgallagher.com/about-html-semantics-front-end-

architecture/

http://smacss.com/book/

http://smacss.com/book/categorizing

http://smacss.com/book/html5

www.xfive.co/blog/itcss-scalable-maintainable-css-architecture/

www.creativebloq.com/web-design/manage-large-scale-web-projects-

new-css-architecture-itcss-41514731

http://nicolasgallagher.com/about-html-semantics-front-end-

architecture/

https://jigsaw.w3.org/css-validator/validator

http://csslint.net/#results

http://www.creativebloq.com/web-design/manage-large-scale-web-projects-new-css-architecture-itcss-41514731
https://github.com/stubbornella/oocss/wiki
https://en.bem.info/methodology/quick-start/%2523should-i-create-a-block-or-an-element
http://nicolasgallagher.com/about-html-semantics-front-end-architecture/
http://smacss.com/book/
http://smacss.com/book/categorizing
http://smacss.com/book/html5
http://www.xfive.co/blog/itcss-scalable-maintainable-css-architecture/
http://www.creativebloq.com/web-design/manage-large-scale-web-projects-new-css-architecture-itcss-41514731
http://nicolasgallagher.com/about-html-semantics-front-end-architecture/
https://jigsaw.w3.org/css-validator/validator
http://csslint.net/%2523results

15

16

17

18

19

20

21

https://github.com/CSSLint/csslint/wiki/Command-line-interface

https://github.com/CSSLint/csslint/wiki/IDE-integration

https://github.com/jamesshore/quixote

https://developer.helpscout.com/seed/css-unit-testing/

https://github.com/oddbird/true

https://docs.cypress.io/guides/tooling/visual-

testing.html#Functional-vs-visual-testing

https://jestjs.io/docs/en/snapshot-testing

https://github.com/CSSLint/csslint/wiki/Command-line-interface
https://github.com/CSSLint/csslint/wiki/IDE-integration
https://github.com/jamesshore/quixote
https://developer.helpscout.com/seed/css-unit-testing/
https://github.com/oddbird/true
https://docs.cypress.io/guides/tooling/visual-testing.html%2523Functional-vs-visual-testing
https://jestjs.io/docs/en/snapshot-testing

Index
A
Andrew, Rachel
Animation

keyframe
performance
property values

Apparao, Vidur
Architectural approach

goals
guidelines

Architecture
software
web

At-rules
@import
@media
See Media query
@supports
See also Fallbacks

attr() function
Attribute selector

B
Block, Element, Modi�ier (BEM)
blur() function
Boland, Tim
Border-box

element
padding

Bos, Bert
Box model
Box-sizing

border-box
See Border-box
content-box

See Content-box
margin collapse

Browser
See User agent

btn-warning class
Bug-prone layout

C
calc() function
Cascading

properties
value processing

Cascading Style Sheets (CSS)
architecture
declarations
de�inition
history
language features
property
structure
Turing complete

Class selectors
Cohesion
Color functions
Combinators
Component-based architecture
Content-box

in code
no padding
with padding

Content Management System (CMS)
Coupling
Coyier, Chris
Cross-browser compatibility

fallbacks
vendor pre�ixes

D

Declarations
properties
units

absolute
font-relative
percentage
viewpoint-relative

user-de�ined functions
variables

Display property
block elements
CSS version
�lexbox
See Flexbox
�loat
inline-block
inline elements

Document Object Model (DOM)

E
Easing functions
Encapsulation
@extend class

F, G
Fallbacks
Flexbox

align-items/align-self
direction
�lex-/basis/grow/shrink
grid
inline-block
justify-content
main axis
uses

Flex-end
Flex-grow property
Flex-shrink property

Flex-start
Flex-wrap property
Floated navigation
Framework

H
Hard-to-maintain layout
Holzschlag, Molly
Hypertext Markup Language (HTML)

I
ID selector
!important annotation

See Precedence
@import class
Inherit

See Inheritance
Inheritance

de�inition
global values

exceptions HTML
inherit
initial
Unset

HTML
precedence
speci�icity

Initial values
See Inheritance

Inline styles
See Speci�icity

Inverted Triangle CSS (ITCSS)

J, K
JavaScript

animation listener output
bootstrap output
CSS via JS

DOM
drawbacks
node tree
stack over�low
styling applications
web components

justify-self property

L
Layout-speci�ic information
Libraries
Lie, Håkon Wium
Lilley, Chris
Logical razor

M, N
Margin collapsing

code
�loated Divs
outline/box shadow
pros/cons

matrix() function
Media query
Meyer, Eric
Mixins

arguments
informational boxes
output
parameters
simple

O
Object-Oriented CSS (OOCSS)

BEM
container from content
goals
rules
skin

Occam’s razor
Orthogonality

P, Q
Precedence
Preprocessors

color values/usage
nesting

Processes
code reviews
decision making
linting
testing
unit testing
visual regression testing

Pseudo classes
Pseudo elements

R
Regular Expressions (RegEx)
Responsive design
Roberts, Harry
Rulesets

S
Scalable and Modular Architecture for CSS (SMACSS)

categories
class naming
ITCSS
recommendations

Scalable Vector Graphics (SVG)
Selectors

attribute
class
id
type
universal

Separation of concerns

Shadow DOM
Shea, Dave
Simmons, Jen
Single responsibility principle (SRP)
Snook, Jonathan
Software architecture

DRY principle
duplicating rulesets
logical razor
nontechnical factors

cost of maintenance
developer satisfaction
development time

separation of concerns
cohesion
coupling
Orthogonality

SVG
Space-around
Space-between
Speci�icity
Stepping function
Structured Query Language (SQL)
Sullivan, Nicole
Suzanne, Miriam
Syntactically Awesome Style Sheets (SASS)

T
Timing functions

easing
stepping

Transform
functions
matrix() function
translate() function

Transition
example, on-hover

property values
translate() function
Type selector

U
Universal selector
Unset

See Inheritance
url() function
User agent

default styles
CSS reset
normalize

technologies

V
Variables

W, X, Y
Web Architecture

browser engine
DOM
HTML

Web component output
Wilson, Chris
World Wide Web Consortium (W3c)

Z
Zeldman, Jeffrey

	Cover
	Front Matter
	1. Cascading Style Sheets
	2. Rules and Selectors
	3. Order of Importance
	4. Layouts
	5. Compatibility and Defaults
	6. Interactions and Transitions
	7. Preprocessors
	8. Frameworks, Libraries, and JavaScript
	9. Architectural Patterns
	Back Matter

